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ABSTRACT 

The axisymmetric nonsimilar compressible laminar boundary-layer 

equations including approximate transverse curvature terms were modified 

to treat inviscid external vorticity, slip and temperature jump as 

first~order quantities, and this is referred to as the first-order 

treatment. The effects of boundary-layer displacement were also 

treated,  Primary interest was in predicting experimentally measurable 

quantities over the entire body length of nonanalytic shapes« and the 

analysis was not confined to the nose or stagnation region. A review, 

is included of second-order boundary-layer theory and of recent 

developments in the numerical solution of second-order boundary-layer 

effects. Comparisons of predicted displacement-induced pressure 

distributions„ heat-transfer distributions and zero-lift drag were made 

with results from second-order boundary-layer theory and experimental 

data for a spherically blunted 9-degrec half-angle cone at free-stream 

Mach numbers of 9 and 18. At moderate to high Reynolds numbers, the 

comparisons showed good agreement between first- and second-order 

predictions and experimental results for drag and heat-transfer dis- 

tributions; however, poor agreement was found between predicted and 

experimental displacement-induced pressure distributions. At low 

Reynolds numbers, both first- and second-order treatments substan- 

tially overprcdicted the zero-lift drag. The range of applicability 

of the theories was established for the conditions treated by 
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inspection of the numerical results and by comparison of the numerical 

results with experimental zero-lift drag data. Separate and coupled 

first- and second-order boundary-layer effects were considered for 

experimentally measurable quantities. The first-order treatment showed, 

for example, that slip and temperature jump produced a small effect 

when considered as a separate effect; however, this effect became 

important and under certain conditions dominant when coupled with 

other effects at low Reynolds numbers. Limitations and difficulties 

in both first- and second-order boundary-layer treatments are dis- 

cussed. 

IV 
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NOMENCLATURE 

Unless otherwise noted, all lengths are nondimensionalized by the nose 

radius. 

Ajj Base area 

Aj Parameter defined by Equation 40f 

a Nose radius in second-order boundary-layer theory 

aj Slip constant, (ir/2)1'2 

B Parameter in displacement thickness with external vorticity 

(see Appendix C) 

Rn Nose bluntness parameter, rn/rjj 

^sh Nose-to-shock radius ratio, rn/rsn 

bj Slip constant, 3/4 

C Density viscosity product ratio, py/p.P- 

CQ Friction-drag coefficient referenced to base area 

Cn Pressure-drag coefficient referenced to base area 

Cdisn Displacement term in continuity equation defined by 

Equation 38a 

2 
C£      Skin-friction coefficient, 2xw/p U 

Cj£     Longitudinal curvature term in continuity equation defined 

by Equation 38b 

*\STJ    Slip and temperature term in continuity equation defined 

by Equation 38a 

xiv 



AEDC-TR-68-148 

CpYQ    Transverse curvature term in continuity equation defined by 

Equation 38c 

Cvort    Vorticity term in continuity equation defined by Equation 38a 

C^      Coefficient in linear viscosity law, (pw/y,J (
Too/Tw) 

cx      Slip constant, (15/8) (ir/2)1/2 

c       Constant pressure specific heat 

Edisn    Displacement term in energy equation defined by Equation 40d 

ELc     Longitudinal curvature term in energy equation defined by 

Equation 40b 

Cgjij     Slip and temperature jump term in energy equation defined 

by Equation 40e 

^TVC    Transverse curvature term in energy equation defined by 

Equation 40c 

Eyort    Vorticity term in energy equation defined by Equation 40a 

e       Error test in first-order momentum and energy equation 

solutions 

Fs      Parameter defined by Equation 86c 

f       Dimensionless stream function 

f      Velocity ratio, u/ue 

g       Stagnation enthalpy ratio, H/He 

H       Stagnation enthalpy 

h       Static enthalpy 

h -    Reference specific enthalpy, 2.119 x 108 ft2/sec2 

j       Index 0 or 1 for two-dimensional or axisymmetric flow, 

respectively 

xv 
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K       Parameter defined by Equation 85b; bound on <t>'(n ) in first- 

order treatment (see Appendix A) 

k       The factor 1 + <n 

L       Characteristic length (dimensional) 

t Axial length of body (dimensional) 

M       Mach number 

M..      Displacement term in tangential momentum equation defined 

by Equation 39d 

M,£     Longitudinal curvature term in tangential momentum equation 

defined by Equation 39b 

MSTJ    Slip and temperature jump term in tangential momentum 

equation defined by Equation 39e 

Mrvc    Transverse curvature term in tangential momentum equation 

defined by Equation 39c 

Mvort    Vorticity term in tangential momentum equation defined 

by Equation 39a 

N       Inner expansion variable in second-order boundary-layer 

theory, n/e;* parameter in first-order treatment defined 

below Equation 78 

n      "Outer expansion variable in second-order boundary-layer 

theory, n*/a* 
2 

P       Inviscid outer flow pressure, p*/p *U* 
00   00 

Pr      Prandtl number 

p       Pressure 

p*       Free-stream normal shock pitot pressure 
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Q Total velocity vector 

R Inviscid outer flow density; radius parameter; gas constant 

Re Reynolds number, P*^* rn*/y* 

Re«, a Reynolds number, PjU^t/v^ 

Re* Reynolds number, p*u* rn/u* 

r Radius 

r Nose radius (dimensional) 

S Entropy 

S' Entropy derivative in basic inviscid flow, dS./dY 

St Stanton number, q*/[p*U*c*(T0*-Tw*)] 

s Surface distance measured from stagnation point 

T Inviscid outer flow temperature, T*/(U* /c*) 
P 

T First-order transverse curvature parameter 
cs 

t Inner flow temperature 

U Tangential component inviscid outer flow velocity 

U^ Free-stream velocity 

u Tangential velocity 

V Normal component inviscid outer flow velocity 

v Normal velocity 

v Hypersonic viscous interaction parameter, M^CC^/Re^ •) 

x Surface distance from stagnation point 

y Distance normal to surface 

z Axial distance from stagnation point 

a Angle between tangent to surface and axis of symmetry 

0 Pressure gradient parameter, (x/ue) due/dx 
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Y Ratio of specific heats, 1.4 

6 Boundary-layer thickness 

6* Boundary-layer displacement thickness, 6**/a* 

6* Davis' displacement thickness, 6*/e 

6* Displacement thickness with external vorticity 

e Van Dyke's expansion parameter defined by Equation 8 

C Inviscid vorticity 

n Transformation variable 

r\m Edge of boundary layer in transformed plane 

Ö Cone half angle 

K Longitudinal curvature 

X Second viscosity coefficient 

v Dynamic viscosity coefficient 

p Density 

o Prandtl number in second-order boundary-layer theory 

T Shear stress 

* Dissipation function defined by Equation 5 

♦ Transformation variable, f-n 

Y Outer stream function 

<!> Transformation variable, g-1; inner stream function 

ft Vorticity index defined by Equation 79 

nj Van Dyke's inviscid vorticity 

ID Exponent in power viscosity law 
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SUBSCRIPTS 

0 Stagnation conditions 

1 First-order quantity 

2 Second-order quantity 

b Base 

disp Displacement effect 

e At the edge of the boundary layer 

eff At the effective body surface 

i lnviscid 

LC Longitudinal-curvature effect 

N Derivative with respect to inner variable N 

n Derivative with respect to outer variable n 

sh Shock wave 

STJ Slip-and-temperature-jump effect 

TVC Transverse-curvature effect 

vort Vorticity effect 

w Wall 

x Derivative with respect to x-coordinate 

y Derivative with respect to y-coordinate 

* Sonic conditions 

00 At free-stream conditions 

SUPERSCRIPTS 

1 Derivative with respect to independent variable 

* Dimensional quantity in second-order theory 
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(k)     Iteration index in first-order displacement treatment 

In the figures, open symbols and/or curves are used to denote numerical 

results and filled symbols denote experimental data. 
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CHAPTER I 
INTRODUCTION AND DEFINITION OF TERMS USED 

Before the introductory discussion of the problem is presented, 

a few terms will be defined which may not have a clear definition in 

the literature.    After the terms are defined, the background to the 

problem will be given and the methods used and scope of the research 

reported in the dissertation will be described. 

I.  DEFINITION OF TERMS USED 

Entropy layer.    This is an inviscid layer of gas near the wall 

which has passed through the curved portion of the bow shock wave.    The 

entropy in this layer decreases from a maximum along the wall to a 

minimum along a streamline passing through the inflection point in the 

bow shock wave (if one exists) and increases to the constant value 

behind a straight (conical) shock wave.    This concept will be made 

clearer later in this chapter by consideration of the inviscid shock 

layer over a spherically blunted cone at hypersonic flight conditions. 

First-order boundary-layer effects.    Prandtl's classical 

boundary-layer equations for conservation of mass, momentum and energy 

for two-dimensional and axisymmetric flow are the basic first-order 

equations.    If terms are added to this system of equations to approxi- 
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mate other effects or if the boundary conditions for the equations are 

modified, the resulting system of equations is called first order, 

and the numerical solution method is called a first-order treatment of 

higher-order boundary-layer effects.  It is possible only a posteriori 

to determine the magnitude of any specific effect by comparison of 

solutions with and without the effect included. Moreover, in general, 

simple scaling laws do not exist to scale wall-measurable quantities 

such as skin-friction coefficient or heat-transfer rate; therefore, a 

series of calculations is necessary over the range of the variables of 

interest. 

Second-order boundary-layer effects. If the flow variables such 

as velocity, temperature, density, pressure, etc, are expanded in terms 

of an appropriate small parameter and the resulting expansions are 

substituted into the Navier-Stokes equations, it is possible to obtain 

two systems of equations describing the flow. The lowest-order system 

is Prandtl's equations, which are called the classical first-order 

boundary-layer equations. These equations are nonlinear partial differ- 

ential equations. A second system of linear partial differential 

equations is obtained where various terms can be identified with 

second-order boundary-layer effects of physical significance. The 

second-order effects are not all independent and uncoupled, but with 

one exception simple scaling laws can be obtained to scale the results. 

Longitudinal curvature effect. When the surface of a body is 
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curved rather than flat in the direction of the free-stream velocity- 

vector, centrifugal forces produce a pressure change normal to the 

surface. This curvature will influence both the inviscid and viscous 

flow fields; however, the effects on the inviscid flow field are usually 

larger, persist further downstream along the body, and are more easily 

treated numerically than are the effects on the viscous boundary layer. 

Transverse curvature effect. A second curvature effect arises 

when axisymmetric bodies of revolution are considered. The boundary 

layer on a body of revolution grows less rapidly than the change in wall 

radius with axial distance far downstream along the body because of the 

transverse curvature effect. Moreover, the radial distance of points 

in the boundary layer from the axis of symmetry may not be assumed equal 

to the local wall radius when the ratio of the thickness of the boundary 

layer to the local wall radius cannot be assumed negligible. 

Displacement effect. In classical boundary-layer theory, the 

properties at the edge of the boundary layer are obtained from the 

inviscid flow field solution over the geometric body without a boundary 

layer. The boundary layer retards the flow and displaces the stream- 

lines near the surface. This effect on the inviscid outer flow appears 

as the flow over the geometric body thickened by the boundary-layer 

displacement thickness. This displacement effect causes changes in the 

properties at the edge of the boundary layer. 
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External vorticity effect. At supersonic and hypersonic speeds, 

a blunt body produces a curved detached bow shock wave which in turn 

produces an inviscid rotational flow field. A boundary layer growing 

on a body under such a flow field would have different "edge" conditions 

because of the shock-generated inviscid external vorticity. This effect 

can be further subdivided into an entropy gradient effect and a stag- 

nation enthalpy gradient effect. For most practical problems, it is 

satisfactory to treat the inviscid flow field as isoenergetic, and thus 

under these conditions only the entropy gradient effect needs to be con- 

sidered. 

Slip and temperature jump effects. Under highly rarefied flow 

conditions, the gas tangential velocity at the wall is not zero relative 

to the wall and the temperature of the gas at the wall is not the wall 

temperature value. A continuum analysis based on the Navier-Stokes 

equations can be applied if the wall boundary conditions on the tan- 

gential velocity and static temperature are modified to include the 

noncontinuum effects of velocity slip and temperature jump. 

The roles of first- and second-order boundary-layer effects 

will be made clearer in the following discussion. 

II. INTRODUCTION 

As a high-speed vehicle enters the earth's atmosphere, the flow 

field about the vehicle changes from near free-molecule flow in the 

outer regions of the atmosphere through various noncontinuum regions 

to a more classical continuum inviscid outer flow and inner viscous 
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laminar and turbulent flow fields. At high speed the gas is not a 

simple ideal gas since chemical equilibrium and nonequilibrium effects 

on the thermodynamic properties are also important. 

The part of this complex problem which will be of concern in 

this dissertation is the extension of classical laminar boundary-layer 

flow theory into the lower Reynolds number regime.  In modern hyper- 

sonic wind tunnels, the aim is toward flight simulation since flight 

duplication is almost never achieved. It is also worth noting that in 

these hypersonic test facilities, the flow fields over blunt-nosed 

bodies are almost always laminar since the effect of the blunt nose 

reduces the local Reynolds number in the flow field, and thus natural 

transition from laminar to turbulent flow seldom occurs. 

The incentive for this research began in 1959 with some un- 

expectedly high drag measurements found in testing a slender blunt 

cone in the hotshot tunnels of the von Karman Gas Dynamics Facility 

(VKF). The application of simple boundary-layer theory failed to pre- 

dict the experimentally observed data. Whitfield and Griffith [1] 

developed an approximate theory for predicting total zero-lift drag 

based upon the boundary-layer theory of Cohen and Reshotko [2,3], dis- 

placement effects based on the work of Lees and Probstein [4] and 

and Probstein [5], and transverse curvature (TVC) considerations as 

treated by Probstein and Elliott [6]. The method briefly was as 

Numbers in square brackets refer to similarly numbered 
references in the bibliography. 
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follows: First, the friction drag and displacement thickness were com- 

puted by the Cohen and Reshotko integral method [3] and a correlation 

of experimental pressure distributions. Then, with the aid of the 

above-mentioned theories [4,5,6] the displacement-induced pressure and 

friction drags and transverse-curvature-induced friction drag were 

computed. Whitfield and Griffith assumed that the theories of 

Probstein [S] and Probstein and Elliott [6] which were developed for 

sharp cones could also be applied to spherically blunted cones by 

assuming that the local, induced skin friction at the sphere-cone 

junction was the same as would exist at the same point on a sharp cone 

(i.e., TW (blunt sphere-cone junction, 0 ) = t     (sharp, 8 )).  In 

addition, constant boundary-layer edge properties were assumed over the 

conical afterbody. The justification for the noted assumptions 

a posteriori was that the induced effects were small, the corrections 

were in the proper direction, and the agreement between analysis and 

experiment was good. The calculations were made using both perfect 

(Y ■ 1.4) and equilibrium gas models. The highly approximate nature 

of the theoretical model used by Whitfield and Griffith [1] was 

recognized; however, a correlation parameter was defined and a method 

developed which correlated well the experimental drag data at MM - 19. 

The agreement between Whitfield and Griffith's prediction and experi- 

mental data can be seen from Figure 1. 

The good agreement which Whitfield and Griffith found between 

their predictions and the experimental data was considered somewhat 

fortuitous since several boundary-layer effects were not considered 
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by them and some of those treated were considered in a highly approxi- 

mate manner. The next attempt at improving the theoretical model and 

numerical solutions was made by Lewis and Whitfield [7]. The basic 

model used by Lewis and Whitfield was the nonsimilar laminar boundary- 

layer theory of Clutter and Smith [8] including approximate transverse 

curvature terms and an inviscid outer flow field. The viscous boundary- 

layer and inviscid outer flow fields were coupled in the following 

manner. The inviscid blunt body and characteristics solutions were 

obtained using the method of Inouye, Rakich and Lomax [9]. The surface 

pressure distribution over the geometric body was then used to determine 

the conditions at the edge of the boundary-layer. The "effective body" 

as seen by the outer flow was obtained by perturbing the geometric body 

by the displacement thickness as follows: 

r -- » r +5* cos a err   w 

The inviscid blunt body and characteristics solutions were obtained 

over an approximate effective body and another boundary«layer solution 

was obtained. This process was continued until there was negligible 

change in the pressure distribution over the body. 

At the time of the calculations by Lewis and Whitfield, they 

found it possible only to treat spherical-nosed bodies in the inviscid 

blunt body solution, and thus the spherical nose was expanded or 

contracted by the displacement thickness at the starting line (M- » 

1.05) for the characteristics solution. Moreover, approximate curve 

fit procedures were developed for describing the effective body 
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downstream of the starting line. 

The theoretical model and numerical treatment used by Lewis and 

Whitfield [7] were superior to those used by Whitfield and Griffith 

[1]; however, the results obtained for prediction of zero-lift drag were 

in poorer agreement with the experimental data as shown in Figure 2. A 

comparison of drag components computed by Whitfield and Griffith and by 

Lewis and Whitfield is shown in Figure 3. The skin-friction drag and 

transverse-curvature-induced drag components predicted by Whitfield and 

Griffith were each about IS per cent larger than those predicted by 

Lewis and Whitfield. The minor drag components due to displacement- 

induced friction and pressure drags were in better agreement; however, 

their contributions were about one order of magnitude less than the 

first two components discussed. 

The defects in both the analyses by Whitfield and Griffith and 

by Lewis and Whitfield were recognized and in fact sustained the 

interest for the work described herein. Both analyses were approximate 

but based upon what were considered some of the best theoretical models 

and numerical methods available at the time the studies were made. 

Both theoretical models approximately treated TVC and displacement; 

Lewis and Whitfield included the nonsimilar boundary-layer effects, 

whereas Whitfield and Griffith used the similar boundary-layer solutions 

and integral method of Cohen and Reshotko [2,3]. 

Those involved in the above-described analyses of the experi- 

mental drag data were aware of the hazard of application of approximate 

analyses outside of ranges where they were developed and tested. 
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Experimental Data 

Sym AEDC-VKF Tunnel       Moo T0 x 10"3, °K Twffo 
■ 16-in. (1) -17 3.5-4.5 -0.1 
♦ 50-in. <H) 16-21 -3 -0.1 
• 100-in. (F) -21 -4 -0.075 
♦ Low Density (U 8.8-9.6 2-3 0.20-0.25 
▲ Low Density (L) 9.4 1.67 -0.3 

1.0 

0.9 

Numerical Results 

Whitfield and Griffith 

Lewis and Whitfleld WO. 2 

0.1 - 

Twfi"0 - 0.066 

Jinv 

0.1 0.2 

5oo "^«W^J 
1/2 

0.3 0.4 

Fig. 2   Comparison of Experimental and Predicted Zero-Lift Drag for a 9-degree 
Sphere-Cone at Mx  =  9 and 18 (from Lewis and Whitfield [7]) 
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The work of Lewis and WhitfieId has been extended to include the 

effects of vorticity interaction as first suggested by Ferri and Libby 

[10] and more fully described by Hayes [11] and Hayes and Probstein [12], 

The effect of inviscid external vorticity is simple conceptually. When 

the Reynolds number is sufficiently low, the laminar boundary layer 

entrains the high temperature, low density gas which crossed the curved 

bow shock. The velocity at the "edge" of the boundary layer increases 

above that along the inviscid wall streamline, and the velocity gradient 

at the edge of the boundary layer is first increased and then decreased 

depending on the length of the body and Reynolds number or boundary 

layer-to-shock layer thickness. 

To help clarify the physical aspects of shock-generated inviscid 

external vorticity, some typical results from a condition where 

vorticity effects are large are presented and discussed. The uncoupled 

inviscxd and viscous flow fields over a 15-degree half-angle spherically 

blunted cone at Mw ■ 18 are shown in Figure 4. Lines of minimum entropy 

and "edge" of the entropy layer are shown in the inviscid shock layer. 

The term "edge" of the entropy layer as used herein denotes a line above 

which the entropy is nearly constant and within one per cent of the 

constant conical limit. The shock wave has an inflection point where 

the shock angle is a minimum, the shock is weakest, and the entropy 

increase across the bow shock wave is a minimum. Since the entropy is 

constant along streamlines, the entropy will be a minimum along the 

streamline which passes through the shock-wave inflection point. The 
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classical or first-order boundary-layer thickness is shown where the 

Reynolds number was chosen such that the boundary-layer thickness 

would be less than the shock layer thickness, and the boundary-layer 

displacement thickness is also shown. Although not distinguishable in 

this figure, the boundary-layer displacement thickness is negative 

over the spherical nose. For the conditions shown in Figure 4, the 

boundary layer is thinner than the shock layer over the entire body . 

and thinner than the entropy layer in the nose region, but the boundary 

layer becomes thicker than the entropy layer for s > 26. Downstream 

of this point the thickness of the entropy layer decreases monotonically 

whereas the shock and boundary-layer thicknesses increase.  It should 

be emphasized that the flow fields shown in Figure 4 were calculated 

on the basis of being completely uncoupled, and the conditions were 

chosen to illustrate some of the features of the flow fields. 

The results from the characteristics solution were interpolated 

normal to the body at several axial stations, and the resulting 

velocity, temperature, pressure, and entropy distributions are shown 

in Figures 5-8. The results were nondimensionalized by the value of 

the variables along the inviscid wall for convenience of presentation. 

Since the sphere-cone tangent point was at z = 0.741, the profiles at 

z = 0.75 represent supersonic flow (M^ ■ 2,15 at z ■ 0.75) over the 

spherical nose where the effects of longitudinal curvature on the 

normal pressure gradient are evident. The flow field near the wall 

adjusts quickly, but the nose influence persists until z > 7.5 in the 

flow field near the shock wave. For thin boundary layers over the 
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Fig. 5  Pressure Distribution Through an Inviscid Unperturbed Shock LayerOver a 
15-degree Half-Angle Cone at MM =   18 
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Fig. 6   Entropy Distribution Through an Inviscid Unperturbed Shock Layer Over a 
15-degree Half-Angle Cone at M«, =   18 
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Fig. 7   Velocity Distribution Through an Inviscid Unperturbed Shock Layer Over a 

15-degree Ha If-Angle Cone at M«,  =   18 
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Fig. 8   Temperature Distribution Through an Inviscid Unperturbed Shock Layer Over 
a 15-degree Half-Angle Cone at M«,   =   18 
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conical afterbody (ö/ySh 
K  0«3)> tne usual boundary-layer assumption of 

3p/3y s 0 is supported by these data. 

Primary interest, however, in these data is in the development 

of the velocity and temperature profiles and their relationship to the 

entropy profiles. The formation of the entropy layer can be seen from 

Figure 6. The monotonic increase in the velocity and decrease in the 

temperature gradients at the wall can be seen from Figures 7 and 8. 

The effects of these gradients in second-order boundary-layer theory 

will be discussed in Chapter II. Far downstream on the cone (z > 20) 

and even for thin boundary layers (fi/ysjj < 0.5), the inviscid velocity 

at the "edge" of the boundary layer would be about 30 per cent greater 

than the inviscid wall value, and the temperature would only be about 

20 per cent of the inviscid wall value. These large changes in edge 

conditions are not usually considered in boundary-layer analyses. 

It is important to note that the 15-degree half-angle cone was 

chosen to magnify the effects of the entropy layer by compressing the 

effects nearer the nose than would be the case for smaller half-angle 

cones. However, in addition to considering these effects on the 

inviscid flow field, it is important to consider the effects of the 

coupling between the entropy and boundary layers. 

The coupling of the inviscid outer flow and viscous boundary 

layer flow complicates the picture described above, and some of the 

difficulties caused by this coupling are considered in this disser- 

tation. Also, at sufficiently low Reynolds numbers noncontinuum effects 

should be considered especially as they affect the wall boundary 
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conditions on the velocity and temperature profiles. 

About the time of the presentation of the results by Lewis and 

Whitfield [7], Davis and Flügge-Lotz [13] published a report on second- 

order boundary-layer effects on hyperboloids and paraboloids at 

infinite Mach number and spheres at a Mach number of ten. The theory 

of Van Dyke [14] was used with an implicit finite difference scheme 

originally proposed by Flügge-Lotz and Blottner [15] for treating the 

classical first-order boundary layer over two-dimensional bodies. 

As will be shown in this dissertation, the theory of Van Dyke when 

coupled with the implicit finite difference method of Davis and 

Flügge-Lotz gives a powerful tool for extending classical boundary- 

layer theory to lower Reynolds number. 

More recently Adams [16] used the Levy-Lees transformation [17] 

to solve the first- and second-order boundary-layer theory again with 

the finite difference method of Davis and Flugge-Lotz. Adams also 

developed an approximate method based on the Newtonian theory for the 

pressure distribution over hyperboloids and paraboloids. The essential 

difference between the second-order treatments of Davis and Flügge-Lotz 

and that of Adams was in the treatment of the displacement effect. 

Adams was able to treat analytic bodies of arbitrary length whereas 

Davis and Flugge-Lotz were restricted to the nose region since in their 

method the effective body was approximated by shifting and expanding 

the original body by the displacement thickness. Although the shifted 

and expanded body technique was useful and had some advantages over 

other methods, it was limited to the nose region since it did not provide 
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satisfactory fits of the effective body over regions far removed from 

the stagnation region. The method developed by Adams was limited to 

analytic bodies since it was based on the Newtonian impact theory and 

was thus not applicable to spherically blunted cones. 

A method has recently been developed by Marchand, Lewis, and 

Davis [18] for treating the second-order displacement effect over 

nonanalytic shapes such as spherically blunted cones.  The method used 

by Marchand, Lewis, and Davis for treating the displacement effect 

will be described later herein, and the remaining second-order effects 

followed Davis and Flugge-Lotz exactly except for the effects of 

vorticity which were coupled to the displacement effect. 

The primary goal of this dissertation will be to present a com- 

parison of a first-order treatment of second-order boundary-layer 

effects with treatments of Van Dyke's second-order theory and a com- 

parison of both treatments with experimental data. Prom these com- 

parisons some conclusions will be drawn regarding the ranges of appli- 

cability of the theories. 

In Chapter II the theory of higher-order boundary-layer effects 

is given, A review of Van Dyke's second-order theory is presented 

including a discussion of the asymptotic matching principle. The source 

of the various second-order effects is indicated, and the coupling 

between second-order vorticity and displacement is shown. 

The first-order treatment of higher-order boundary-layer effects 

is given in Chapter III. The effects of vorticity, slip and tempera-' 

ture jump (considered as a single effect), and displacement are described. 
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The effect of first-order transverse curvature was developed by Clutter 

and Smith, and the approximate nature of the treatment caused by an 

error in the original theoretical development is discussed. 

Numerical results and discussion will be presented in Chapter 

IV. The conditions treated by the first- and second-order theories 

will be given, and the numerical results will be presented and dis- 

cussed. 

Comparisons of the numerical results from the first- and 

second-order theories will be made with experimental data and the 

results discussed in Chapter V. 

The conclusions from the study will be given in Chapter VI. 

From the comparison of numerical results and experimental data, the 

ranges of applicability of the theories will be discussed, and the need 

for future work will be indicated. 

Separate effects and problems will be treated in appendixes. The 

numerical treatment of the first-order boundary-layer theory is des- 

cribed in Appendix A. The method used to treat first- and second-order 

displacement effects is described in Appendix B. Finally, the effect 

of vorticity on the displacement thickness is derived in Appendix C. 
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CHAPTER II 
REVIEW OF SECOND-ORDER BOUNDARY-LAYER THEORY 

The second-order boundary-layer theory of Van Dyke [14] is 

reviewed to indicate the salient features of the theory and the roles 

of the various second-order effects. The critical role of the match- 

ing of the inner and outer expansions,, based on Van Dyke's asymptotic 

matching principle, is discussed. 

In the second-order boundary-layer theory, Van Dyke [14] 

identified seven separate second-order effects which were longitudinal 

curvature, transverse curvature, slip, temperature jump, entropy 

gradient, stagnation enthalpy gradient, and displacement.  The 

separation of the effects of vorticity and displacement is somewhat 

arbitrary; however, the presentation given below follows Van Dyke's 

treatment. 

I. SECOND-ORDER BOUNDARY-LAYER EQUATIONS 

The Navier-Stokes equations are written in the orthogonal 

coordinate system (s,n) shown in Figure 9, where s is the non- 

dimensional distance along the surface, n is the nondimensional distance 

normal to the surface, K(S) is the longitudinal surface curvature, and 

*A brief physical explanation of each of the second-order 
boundary-layer effects is given in Chapter I. 
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Fig. 9   Coordinate System for the Second-Order Boundary-Layer Theory 
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rw(s) is the radius of the axisymmetric body where all lengths are non- 

dimensionalized by the nose radius of curvature a*. Further, all veloci- 

ties are referred to U*, pressure to P£U* , density to p*, temperature 

to U*2/c*, entropy to c*, enthalpy to U£2, and viscosity to the value 

of u at T* = U*2/c*. oo   p 

The continuity equation becomes 

(rJpu)s + (krJpv)n =0 (1) 

where subscripts denote differentiation and j  ■ 0 for two-dimensional 

flow and j  » 1 for axisymmetric flow.    The radius r = rw + n cos a and 

the function k = 1 + ten are used for convenience. 

The Navier-Stokes momentum equations become 

E~2  [p(uus/k + vujj + Kuv/k)  + ps/k]  = {yfi^ +  (vs  - <u)/k]}n 

+ (2/k)   [u(us + iev)/k]s + P(2K/k + j cos a/r) [un +  (vs - <u)/k] 

+  [2jurs/(kr)]   [(us + <v)/k - urs/(kr)  - v cos a/r] 

+  (1/k)   U[(us + KV)A + vn + j   (urs/k + v cos a)/r]}s (2) 

and 

e-2  [p(uvsA + wn - KU2/k)  + pn] = 2(yvn)n + {y[un +  (vs - Ku)/k]}s 

+ 2u(ie/k + j  cos a/r)vn - 2yK(us + Kv)/k2 

- 2jy(urs/k + v cos a)/r2 + jurs  [1% +  (vs - ieu)/k]/(kr) 

+ U[(us 
+ KV)A + vn + j   (urs/k + v cos a)/r]}n (3) 
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The energy equation is 

e-2   [p(uTs/k + vTn)   -  (ups/k + vPn)]  = a"1  (yTs/k)s/k 

+ o"1   (uTn)n + jo"1 yTsrs/(k2r)   + a'1  (ic/k * j  cos ct/r)  Tn + *       (4) 

where a is the Prandtl number, and the dissipation function is 

* = M{2[(US + Kv)/k]2 + 2vn
2 + 2jr-2   (urs/k + v cos a)2 

+  [% +  (vs - Ku)/k]2} 

+ * [Cus * Kv)/k + vn + jr
-1 (urs/k + v cos a)]' (5) 

The nondimensional equation of state is 

P ■ (Y-I)PT/Y (6) 

The viscosity law is 

u - p(T) (7) 

The second coefficient of viscosity is A. 

Van Dyke defined the expansion parameter e to be 

U* Ott2/cJ) 
o* U* a* 

1/2 y* [(Y-DM£ T*] 

Re« v*  CT*5 

1/2 

If a power viscosity law u « Tu is assumed, then 

[(Y-I)M£]
U 1/2 

Re. 

C8) 
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Thus with Y » 1.4, e ■ 0.632S M./Re«,1/2 for the linear viscosity law 

(u « 1.0), and e = 0.795 (M^/Re^)*/2 for the square root viscosity law 

(w = 0.5).2 

The outer (outside the boundary layer) flow variables in the 

Navier-Stokes equations (including continuity and energy equations in 

the system) are expanded in powers of e as follows: 

u(s,n;e) ^ Uj(s,n) + eU2(s,n) + . . . (9a) 

v(s,n;e) <v Vjfs.n) ♦ eV2(s,n) ♦ . . . (9b) 

p(s,n;e) *  Pj(s,n) + cP2(s,n) + . . . (9c) 

p(s,n;e) ^ Rj(s,n) + eR2(s,n) ♦ . . . (9d) 

T(s,n;e) * T^s^n) + eT2(s,n) ♦ . . . (9e) 

Substituting Equations 9 into Equations 1-6 and equating terms 

in E° gives 

(rJR1U1)s ♦ (kr^V^ - 0 (10) 

RlCululs/k * vluln ♦ «"lVO ♦ PisA = 0 (11) 

Rl("iWk ♦ VjVxn - KUj2/k) ♦ Pln = 0 (12) 

2With linear viscosity law, the expansion parameter is related 
to the hypersonic interaction parameter v,,,, by t * 0.6325 v,,, * 
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Rl(UjTla/k ♦ VjTln) - (l^P^/k ♦ VlPln) = 0 (13) 

and 

Pj = CY-D RxtyTf (14) 

which are the first-order inviscid flow equations. 

The stream function is defined in the usual way 

*\ul '  vln 
and 

krJRjVj = - tls (15) 

The entropy S, and stagnation enthalpy Hj are constant along 

streamlines and can be written 

SX = SjC^), . «ndHj.T^iUj = HjCfj) (16) 

The second-order equations are obtained by equating terms in 

e1, and the tangential momentum equation is 

R1[Cu1u2Js/k ♦ Vlu2n ♦ v2uln ♦  K(UIV2 + u^j/k] 

+ R^U^/k + VjUln + KUJVJA) ♦ P2sA * 0 (17) 

This equation, typical of the system of equations, is linear in 

the second-order terms and inviscid since viscous terms in the Navier- 

2 
Stokes equations are of third-order being multiplied by e . Thus, a 

third-order expansion would introduce viscous terms in the equations 

for the outer flow. 
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The normal derivatives of V1 and P. at the surface are obtained 

by evaluating Equations 10 and 12 at n = 0, and one finds 

vln ' '  [Cr^r1  (vSuiJsJn-O d8) 
and 

pm ■ r*Riui2]n=o ■ <l9> 

The normal component of the tangential velocity U, is obtained 

from the vorticity of the outer flow which is 

nl B " "in ♦ <vls " KUl)/k (20) 

Crocco's vortex theroem [12] is 

\  * vt1  = Vl^ - TJVSJ (21) 

at the surface, and substituting Equations 15 and 16 into Equation 21 

gives 

°1 a rw'Rl tTlsl'- Hj») at n ■ 0 (22) 

where prime denotes d/d*,. 

Substituting Equation 20 into Equation 22, one can obtain 

Uln = - KUJ - rJll^Sj'- H^) (22a) 

to be evaluated at n = 0. 

The normal gradients of T, and Rj are obtained by differentiat- 

ing Equations 16 and 14 with respect to n, using Equation 22a, and 

evaluating the results at the wall yields 
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Tm ■ £*ui  * V Wisi'ln-o (23) 

and 

Rlns R1U1 

K "I 
TTTJ- *wJ Risi' n=0 (24) 

The outer expansion fails at the surface since the highest 

derivatives in the Navier-Stokes equations were lost in the expansion. 

Therefore, an inner expansion is needed which is valid near the surface 

although it will be invalid far from the wall.  The inner expansion 

is obtained by defining an expansion of the form 

u(s,n;c) ^ u1(stn) + eu2(s,N) + . 

v(s,n;e) A» ev.(sfN) + e2v2(sfN) + 

p(s,n;e) ^ Pl(s,N) + ep2(s,N) ♦ . 

P(s,n;e) ^ p^s.N) + cp2(s,N) ♦ , 

T(s,n;e) ^ t^s.N) +  et2(s,N) + 

■  •  ■ 

•  «  • 

(25) 

(26) 

(27) 

(28) 

(29) 

where n = e.N. 

The viscosity is expanded in a series in T as follows: 

u(T) A, pCtj) + eu»(tj)t2 + . . . (30) 

Substituting the inner expansion Equations 25-30 into the Navier- 

Stokes Equations 1-7 and equating terms in e° gives the first-order 

equations, which are 
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and 

trwJPlUj)s ♦  (rJplVl)N » 0 (31) 

Pltululs * V1U1N) + Pis "  CMU1N)N = 0 (32) 

P1N - 0 (33) 

MVis * V
I'INJ " <ulPls * vlPlN^ 

- o*1(wt1N)N - pu1N
2 = 0 (34) 

Pr ti Pltj (35) 

which are Prandtl's compressible boundary-layer equations. 

Equating terms in e1 yields the second-order boundary-layer 

equations, which are 

[V> (Plu2 ♦ P2U!)]S + [rw
j (p^'2 + P2Vi)]N 

" ^ort + CLC * CTVC * Cdisp + CSTJ C36) 

plCulu2s * u2uls + V1U2N + V2U1N} * p2Cululs + V1U1N^ 

- (wu2N * u'u1Nt2)N 

s "vort * MLC + MTVC + Mdisp * MSTJ C37) 

Pl(Ult2s ♦ u2tls + Vlt2N + v2t1N) ♦ P2(u!tls ♦ vtt1N) 

"  u2pls(s»°) " two"It2JNN " 2uulNu2N " U'U1N *2 

a Evort * ELC ♦ ETVC * Edisp + ESTJ C38) 
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and 

p2 * *T" (pll2 * p2tl) (39) 

P2N a Kplul (40) 

where 
cvort 3 Cdisp = CSTJ = 0 (38a) 

CLC * " ***    (N Plvl>N C38b) 

c-rvc S " ^Cw      cosct Npiui^s + CV     cosa NPIVI)N1 (38C) 

Mvort " - «wW^V^n-O C39a) 

MLC = K[N(UU1N)N  + uuiN -  »'u^w 

- Np1vJu1N - P^jvJ 

"   l«CRlUl\=0 \h C39b3 

■AjyC = j  cos a y u1N/rw (39c) 

HdUp -  [»lOW« ♦ IWlsJn»0 (39d) 

MSTJ =» 0 (39e) 

Evort * rwJullRl2Tlsl,v2ln=0 C40a) 

ELC B  «[NPi^tis  + o-iy t1N ♦ p^  vt 

- NUlPls(s,0)   -  2y U!U1N] 

+ Uj^CRiU^Vo \1]5 (40b) 
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ETVC = J°"    cos a v TJN/'rw (40c) 

Edisp =  - MMWs * R2ÜlUls)n=0 (40d) 

ESTJ «= 0 (40e) 

and 

Aj = N + /  [1 - PjUjVtRjt^2)n=0]dN. (40f) 
N 

The subscripts vort, disp, LC, TVC, and STJ denote contributions 

due to vorticity, displacement, longitudinal curvature, transverse 

curvature, and slip and temperature jump, respectively. The differ- 

ential equations are linear, but not all of the effects arc independent 

since, for example as will be discussed below, the VpCs.O) in liquation 

39a is related to the displacement effect through the displacement 

thickness 6*. 

The second coefficient of viscosity \  is of third-order (that 

is. in terms multiplied by e  ) and thus does not appear. 

Neglecting surface mass transfer, the boundary condition along 

the surface requires 

v(s,0) = 0 (41) 

Van Dyke [14] obtained the remaining surface boundary conditions from 

Street [20] including first-order slip-flow conditions as follows: 

u(s,0) = E2 

and 

*H^r *• b^T,. 1  Y 
(42) 

n=0 
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K..0) ■ T„ ♦ 6* [«, t ffcl T]
I/2
 Tn]n,0 (43) 

where ^  = (ir/2)1/2, bj = 3/4, and Cj = (15/8) (ir/2)1/2 when a hard 

sphere, monatomic gas model with unit accommodation coefficients is 

assumed. 

If the surface temperature is prescribed as Twfs), then sub- 

stitution of the inner expansion Equations 24-30 into the wall boundary 

conditions Equations 41-43 gives 

Ul(s,0) = v^s.O) = 0 (44) 

u2C..0)-.1[jj.|ljLtIJ1/2u1N]||B0      ' (45) 

v2(s,0)  = 0 (46) 

tj(s.O)  = tw(s) (47) 

t2C.O) . ejLJttL   tj1/2 t1N]N_o C48, 

Van Dyke [14] gives corresponding expressions when the tempera- 

ture gradient at the wall is prescribed. 

II. ASYMPTOTIC MATCHING CONDITIONS 

The outer boundary conditions will depend on the problem to be 

solved; however, the outer expansion fails to satisfy the wall boundary 

condition and, in general, the inner expansion fails as N -> «. It is 

34 



AEDOTR-68-148 

fundamental to the method of matched asymptotic expansions that there 

exist an overlap region where both inner and outer expansions are 

valid, and thus both expansions can be matched in this region. 

Van Dyke [19] described the asymptotic matching principle as 

follows: 

The m-term inner expansion of (the n-term outer 

expansion) = the n-term outer expansion of (the 

m-term inner expansion). (49) 

By his definition, the m-term inner expansion of the n-term 

outer expansion is obtained by rewriting n-terms of the outer expan- 

sion in inner variables (N in second-order boundary-layer theory), 

expanding asymptotically in small e, and truncating the result after 

in nonzero terms. The converse of the procedure is used on the right- 

hand side of Equation 49. 

To demonstrate the matching procedure, the tangential velocity 

component is considered first. Applying the matching principle with 

n ■ si ■ 1 gives the matching conditions for the first-order boundary- 

layer theory. According to the matching principle, 

1-term outer expansion:       Uj(s,n) 

rewritten in inner variables: U.(s,eN) 

expanded for small e:       U,(s,0) + NcU, (s,0) + 

1-term inner expansion:      Uj(s,0) 

1-term inner expansion:       u.(s,N) 

rewritten in outer variables: u1(s,n/c) 

»  *  • 
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expanded for small e:       u,(s,~) 

1-term outer expansion:      Ui(s,«) 

Equating the results one obtains 

UjCs.N) ^  U1(s,0) as N ■+ - (50a) 

In the same manner, one finds the following matching conditions: 

PjCs.N) % P^s.O) ) C50b) 

PjCs.N) ^ RjCs.O)   \   as N - » (50c) 

tjCs.n) -v T^s.O)   I (50d) 

The behavior of v. as N ■* » is found by solving the first-order 

boundary-layer equations. 

The matching with m * 1 and n a 2 gives the matching condition 

due to the displacement thickness. Again applying the asymptotic 

matching principle to the normal velocity component v yields the follow- 

ing: 

I-term inner expansion: ev,(s,N) 

rewritten in outer variables: evj(s,n/e) 

expanded for small e: ev,(s,«0 

2-tcrm outer expansion: evj(s,») 

2-term outer expansion: Vj(s,n) ♦ eV2(s,n) 

rewritten in inner variables: V,(s,eN) + eV2(s,eN) 

expanded for small e: Vj(s,0) + eNV,n(s,0) + . . . 

+ e[V2(s,0) + cNV2n(s,0) + ...] 
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1-term inner expansion:      e[V"2(s,0) + NVln(s,0)] 

Equating the results gives 

V2(s,0) = lim [v^s.N) - NVln(s,0)] (51) 
N •* «o 

where use was made of the boundary condition V\(s,0) = 0. 

Matching with m = n ■ 2 gives the remaining matching conditions 

as follows: 

u2(s,N) * U2(s,0) + NUln(s,0) (52a) 

p2(s,N) %  P2(s,0) ♦ NPln(s,0) (52b) 

P2(S,N) -v. R2(s,0) + NRln(s,0) (52c) 

t2(s,N) * T2(s,0) + NTln(s,0) (S2d) 

Vj(s,N) ^ V2(s,0) ♦ NVln(s,0) (52e) 

where each of Equations 52 is evaluated as N ■* ». 

Equation 51 can be related to the boundary-layer displacement 

thickness 5* as follows: The definition of the displacement thickness 

is 

6* - /  [1 - P^J/CR^J) 0]dN (53) 
o 

Using the inner expansion stream function ^^(s.N) ■ r PJUJ, and 

>i'ln(s,0) = I|IIN(S,N) as N + «, one obtains 
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6*  =  lim  [N - Yjts.NJ/V^Cs.OJ] (54) 

N + <» 

Multiplying by rw
:,R1(s,0)U1(s,0) = ^in^3»0' and differentiating with 

respect to s yields 

(rttJR1(s,0)U1(s,0)6*)s 

= lim [WlsN(s,N) - *ls(s,N)] 
N ■* » 

= lim [NC-r^pjVj),^ + rw pjvj 
N ■* » 

= lim [r^pjVj - rw
JNCp!V1N + VXP1N)J (55) 

N * " 

where the last term in the last expression is zero since the gradient 

of the first-order density vanishes as N -► •». The final result is 

Crw
JR1(i,0)U1(sf0)6*)a = rwJR1(s,03V2(s,0)        (56) 

where Equation 51 has been used. This final expression provides a 

means of evaluating the second-order normal velocity component V2(s,0) 

once the first-order outer flow and displacement thickness are known. 

As described by Van Dyke [14J and Davis and Flugge-Lotz [13], this 

relation is important in second-order boundary-layer theory since it 

relates the displacement effect through 6* with the vorticity effect 

through V2(s,0). 

It is instructive to consider the matching conditions in a 

slightly different way which indicates the second-order effects 

involved.  From Davis and Flugge-Lotz, these conditions are as 
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follows: 

u2(s,N) %  - r^Nl^TjSjln.o - riHUj]^ ♦ [U2]n=0 

and 

t2(s,N) * rJWir^sl)^ + KNIUJ2]^ + [T2]n=0 

to be evaluated as N + », and where the terms on the right-hand side of 

each expression are due to vorticity, longitudinal curvature and 

displacement, respectively. 

This rather extensive review of second-order boundary-layer 

theory has been given to indicate the various second-order effects and 

their relationship to first-order theory. The critical role of the 

matching of inner and outer expansions has also been indicated in 

addition to the coupling which exists between the displacement and 

vorticity effects. 

The first- and second-order equations were solved numerically 

by Van Dyke [14] at the stagnation point of a sphere at infinite Mach 

number.  Later Davis and Flugge-Lotz [13] using an implicit finite 

difference method, solved the stagnation region for hypcrboloids and 

paraboloids at infinite Mach number and for a sphere at M,,, ■ 10. The 

conditions considered by Van Dyke gave a displacement thickness near 

zero, and he neglected that effect. The results of the method used 

by Davis and Flügge-Lotz for treating the displacement effect (the 

shifted and expanded body) was independent of the expansion parameter 

E, and thus the results could be scaled in e. This result is generally 
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not possible to obtain because the effects of displacement are depend- 

ent on the perturbation of the inviscid outer flow which is a global 

rather than local effect. 

Because of the coupling of displacement and vorticity, the effect 

has been treated as either a displacement or vorticity effect. The 

effect is more clearly seen by considering the second-order inviscid 

pressure gradient which is 

P2s(s,0) = -[RiOWg ♦ RaUiUj, - rw\
2Tjy2s[]nm0 (59) 

where the last term arises due to the coupling between vorticity and 

displacement (see Equation 56). According to the second-order theory, 

the term may be considered as either a displacement or vorticity 

effect. Van Dyke [21] calls the effect a "displacement pressure" effect 

if the term is considered as a displacement effect and as a "displace- 

ment speed" effect if treated as a vorticity effect.  Both Van Dyke [14] 

and Davis and Flugge-Lotz treated the term as a displacement speed 

(vorticity) effect.  Recently Adams [16] and Marchand, Lewis, and Davis 

[18] treated analytic bodies and spherically blunted cones, respectively, 

by both methods.  It was observed first by inspection of the numerical 

results and later proved by Adams [16] that the displacement pressure 

treatment results were not unique but were affected by where the outer 

boundary conditions were imposed.  The displacement speed treatment, 

3The term unique will be used to denote second-order results 
which were not affected by the location of the outer edge of the boundary 
layer or the matching point for the inner and outer flow field solutions. 
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however, gave results independent of the matching point or edge of the 

first-order boundary layer. The disadvantage of the displacement speed 

treatment was that it gave unrealistic, separate vorticity and dis- 

placement effects.  Adams [16] and Marchand, Lewis, and Davis [18] 

suggested that the only proper physical treatment was a combined 

vorticity-displacement interaction.  A significant disadvantage in the 

combined vorticity-displacement interaction is that it makes comparison 

with other theoretical or numerical treatments more difficult.  It 

should be noted that although the displacement pressure results were 

found to be nonunique, comparison of results for the sum of displace- 

ment plus vorticity effects between the two treatments showed errors 

of about 5 per cent in the displacement pressure results for the wall 

shear stress.  Because the errors found by Adams [16] and Marchand, 

Lewis, and Davis [IS] were small and since the displacement speed 

treatment gave unrealistically large displacement effects (treated as 

a separate effect), the second-order results used for comparison with 

the first-order treatment of vorticity and displacement came from a 

displacement pressure treatment. 
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CHAPTER III 
FIRST-ORDER TREATMENT 

The first-order treatment of higher-order boundary-layer effects 

presented herein is based on a modification to the nonsimilar boundary- 

layer theory of Clutter and Smith [8]. The modification includes 

addition of the separate or combined effects of the vorticity inter- 

action theory of Hayes and Probstein [12] and the slip and temperature 

jump wall boundary conditions of Van Dyke [14],  In addition, the 

approximate treatment of transverse curvature by Clutter and Smith and 

the effects of displacement are also considered. 

An error exists in the transverse curvature term in the Clutter 

and Smith theory which is retained in the present treatment. The 

reasons for not correcting the error were twofold. First, to correct 

the error without redefining the transformation variables would have 

introduced several additional terms and substantially complicated the 

numerical solutions. The error has recently been corrected by Jaffe, 

Lind, and Smith [22] by means of new transformation variables.  The 

second reason for not changing the Clutter and Smith variables was the 

widespread use of the computing machine program throughout the country 

in engineering applications.  It was felt desirable to establish the 

error caused in wall shear stress, for example, using the Clutter and 

Smith method. Comparisons will be given in a later chapter which will 

show the magnitude of the error in the integrated friction drag. 
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The first-order boundary-layer equations are given in this 

chapter with derivations of the effects of vorticity and slip and 

temperature jump (STJ).    The method of solution of the first-order 

boundary-layer equations is described in Appendix A. 

I.   BOUNDARY-LAYER EQUATIONS 

The first-order steady-flow equations for an axisymmetric 

laminar boundary layer in the coordinate system shown in Figure 10 

including transverse curvature are as follows: 

(rpu)x +  (rpv)y = 0 (60) 

p(uux + vuy)  = - px + H. ryuy +   (nuy)y (61) 

p(uHx - vHy)   = I ry t»    Hy + y(l -  l/Pr)uuyJ 

* \h Hy+ p(1" 1/Pr)uuy] C62) 

Clutter and Smith use the following transformations: 

n = OUp^x)1^ I  p dy (63a) 

and 

x = x (63b) 

They also defined a stream function lp by 

pru =  (<|ir)y and pvr = -(+r)x f64^ 

The dimensionless stream function f is then defined as 
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3f/3n = £' = u/uc (65) 

Then they state the following relation between f and ty: 

* = (Ptw.xue)1/2 f (66) 

which is incorrect.    The correct expression should read 

*r =  (p*y*uex)1/2 / rf'dn (67) 

If r s r(x)  only, then Equation 67 would reduce to Equation 66 as given 

by Clutter and Smith; however, such is not the case since r(x,y) = 

rw(x) + y cos a-    This error was later recognized by Clutter and Smith 

[23] but not corrected until the recent work of Jaffe,  Lind, and Smith 

[22].    Following Clutter and Smith,  Equation 66 is assumed, and trans- 

formation of Equation 61 gives 

(C*r)_1   (Crf")'  + 0(pe/p  - f'2) 

+  [(B+l)/2 + R]ff" - x(f»f£ - f"fx) = 0 (68) 

where 

C = Pu/Peue (69a) 

C* = P*P,/peue (69b) 

0 =   (x/ue)due/dx (69c) 

and 

R =  (x/r)   3r/3x (69d) 
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The no-slip boundary condition is 

f'(0) = 0 (70) 

Neglecting mass transfer at the wall gives 

fw = f (0) = 0 (71) 

The remaining boundary condition is 

ft (n + «) . f« (») a i (72) 

if first-order vorticity is neglected. 

After defining the enthalpy ratio g ■ H/He,  the energy equation 

is transformed to th<->   x,n-plane and becomes 

(Corr^rfC/Prjg«   +  (ue
2/IIe)C(l-l/Pr)f >f"] }» 

= -   [(B+D/2 + R]fg« + x(fgx - g'fx) (73) 

with the boundary conditions 

gU) - 1 (74a) 

and either    g(0) = gw(x) or g'(0) = g^(x) (74b) 

Clutter and Smith introduced the further transformations 

<fr' = f1 - 1 and * = g - 1 (75) 

to improve the accuracy of numerical calculations« They also defined a 

transverse curvature Tcg by 
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Cl/r)9r/3n = Tcs pe/p (76) 

In terms of these new variables, the momentum equation becomes 

(CD1 « - Tcs(pe/p)C4>" + C*ß[*'
2 ♦ 2*» + 1] 

- C*N(<j>+n)V* + C*x[(*'*l)<fr'x - ♦"♦x3 

+ {C*(pe/pix(p*/pe)(u*/ue)
2 [CY-O/Y] 

• [He/u.
2 - 1/2] d(p/p.)/dx} (77) 

and the energy equation is 

{(C/Pr)*' + (ue
2/He) C[(l-1/Pr) (4>' + l)<T}' 

■ - Tcs(pe/p) {(C/Pr)*' + (ue
2/He) C[(l-1/Pr)(♦•+!)*"} 

- C*N(*+n)*' + C*x[(*'+l)^x - i|)'4ix] (78) 

where N ■ (ß+l)/2 + R, 

II. EXTERNAL VORTICITY EFFECTS 

Inclusion of vorticity does not alter the basic equations but only 

the boundary conditions, Hayes and Probstein [12, page 370] define a 

vorticity index 

JJ _ vorticity at the outer edge of the boundary layer 
average vorticity across the boundary layer 

«»   n»l 
/  P dy (79) 

P«U°   o 
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where Ce is the inviscid vorticity at the outer edge of the boundary 

layer.     It should be noted that the vorticity index defined by Equation 

79 will include the effect of displacement when coupled with vorticity 

since the properties are then to be evaluated at effective body sur- 

face. 

From Crocco's vorticity law in terms of Van Dyke's variables, 

the inviscid vorticity becomes 

Cw =  C3Ui*/3y*)w = (U£/r*)3uy3y 

= -  (U*/r*)   [r>TSl']e (80) 

where the -entropy gradient is obtained from Van Dyke [14] as 

-1.6CM»2 - l)2 B2sh 
S[(0) 5—r- 
1     (2.8 Mw - 0.4)(2 + 0.4 Mw) 

assuming y ■ 1.4 with Bsh = rn/rs (see Equations 20 and 22). A second- 

order expansion of the velocity leads to 

u(x,y;e) = Uj(x.y) + eu2(x,y) 

'v-    U^x.O)  + EU2(S,0)  - ylrwJRjTjSjly^ (81) 

where use was made of Equations  22a, 50a, and 52a. 

The vorticity index in the Clutter-Smith transformed plane 

becomes 

a = &e n=l Ce       r p*u. xl ^2 

peue        j    " -'      peue 
o 

1£*VJ*_xl 
ue    ] f    PdyS—       -TT— (82) 
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Substituting liquation 80 into Equation 82 yields 

fltt/r*)      \rj  UTS,' I        [ÜM'     11/2 
P* ¥■ I1^! hH1/2 

Dividing Equation 81 by Ug/U^ a U\(x,0) ♦ eU2(x,0), substituting 

Equations 63a and 83, and evaluating the result as y •*■  » yields 

(84) Hijgl « £•(-) « 1 tfl(x) / ^dn 

for the outer boundary condition on the momentun equation including 

external vorticity. 

It should be noted from Equation 84 that the boundary condition 

f'(») nust be obtained by iteration since the integral is unknown 

a priori. The numerical procedure used for solution of the first- 

order boundary-layer equations is described in Appendix A. The pro- 

cedure used by Clutter and Smith is convenient when iteration is 

required, since the basic method is iterative somewhat unlike the 

implicit finite-diffejsnee scheme of Flugge-Lotz and Blottner. 

The vorticity index ft can be written as 

A s KrJ[(He/u*
2) - I (ue/u*)

2] x1/2 (u*/ue)
3/2 (85a) 

where 

K=- (p*/pJ(u*/uJS1V(Re*)1/2 (85b) 

independent of x. 

Thus one finds that ft * x3' * as x + » for spherically blunted 
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cones.    This index is not to be confused with 

defined by Van Uyke [14]  for the inviscid vorticity.    Davis and 

Flugge-Lotz  [13]  noted that fij * x for large    x    since S|(0) ■ 

constant and P, -*■ constant far downstream on most analytic bodies and 

all spherically blunted cones. 

III.  FIRST-ORDER SLIP AND TEMPERATURE JUMP EFFECTS 

From second-order boundary-layer theory, Van Dyke [14] showed 

that the slip-flow boundary conditions are 

u(0)  =  [u/p  (itRT/2)V2    3u/3y]w 

and 

T(0)  = Tw +   (15/8) [u/p  (TTRT/2)
1/2

  3T/3y]w 

when the hard-sphere model for the gas was used to evaluate the 

coefficients. 

Transforming the equations to the x,n-plane and expressing in 

terms of convenient variables for inclusion in the Clutter and Smith 

numerical scheme gives 

f(l-O)  - JH.   £jt Pi £..Cn.0) (86a) 

lThe  second term in the wall slip velocity boundary conditions 
(Equation 42) is of third order (i.e. of order e*) and was not 
considered. However, for the constant wall temperature conditions 
treated, the term would have been zero in any event. 
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^'■Vr&S1^ (86b) 

where 

F * In JL. »*2  hfef ü£ JL ll 1/2 (86c) 5   \     Y-l 2href hw   u* Re* xj 

Subscript w denotes properties evaluated at the no-slip wall con- 

ditions. The fluid properties should be evaluated at the slip con- 

ditions as described by Patterson [24]; however, to make direct com- 

parison with the second-order results, the properties were consistently 

evaluated at the no-slip wall conditions.  In recent calculations for 

flow over a sharp cone at low Reynolds number conditions, Mayne, 

Gilley, and Lewis [25], using a modified version of the Jaffe, Lind, 

and Smith [22] theory and slip-flow equations similar to those used 

herein, evaluated the fluid properties at the slip conditions. Un- 

published comparison of results using fluid properties evaluated at 

both the slip and no-slip conditions showed small differences in the 

wall shear stress. 

The STJ boundary conditions in Equations 86 must be obtained by 

iteration since the solution yields f"(na0) and 3h/3y $  g* (ns0) with 

STJ. As in the case with external vorticity, inclusion in the Clutter 

and Smith numerical scheme presents no difficulty, and the method of 

inclusion is described in Appendix A. 

IV. DISPLACEMENT EFFECT 

In a recent paper, Van Dyke [26] discussed the role of the 
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displacement effect in higher-order boundary-layer theory. He indi- 

cated that the first discussion of higher-order effects was given by 

Prandtl [27, page 90] when he described the displacement effects of the 

flat-plate boundary layer on the uniform outer flow as follows: 

The displacement of the stream-lines by the amount 6* pro- 
duces a slight alteration in the potential flow which was made 
the basis of the calculations.  Instead of the simple parallel 
flow, the flow around a parabolic cylinder of thickness 26* 
should be introduced, which would slightly alter the pressure 
distribution. The above calculation would have to be repeated 
for this new pressure distribution and if necessary the process 
repeated on the basis of the new measure of displacement so 
obtained. Such calculations have so far not been performed; 
they would, in any case, make little difference in the regions 
where the calculations are usually applied in practice. They 
would however, become necessary if the transition to smaller 
Reynolds numbers U^p^L/u^ were attempted. 

Van Dyke [26], in describing the difficulty in treating the dis- 

placement effect, noted the global rather than the local nature of the 

effect. He termed the effect due to classical boundary-layer theory 

plus the flow due to displacement as "one-and-a-half-order-theory." 

However, the term first-order displacement effect will be used herein 

to describe the effect since the choice of title is arbitrary and not 

derived by analysis, 

No modification to the basic boundary-layer equations is 

required to treat the first-order displacement effect. The treatment 

of first- and second-order displacement effects is given in Appendix B, 

where the method of treating the perturbed inviscid outer flow is 

described. 
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CHAPTER IV 

NUMERICAL RESULTS AND DISCUSSION 

Comparisons of first- and second-order treatments of transverse 

curvature, vorticity, slip and temperature jump (as a single effect), 

and displacement will be presented in this chapter. A sensitive 

quantity for such comparisons is the effect on zero-lift drag, and thus 

this will be used primarily for comparison of numerical results in this 

chapter and with experimental data in the next chapter. The effects of 

viscosity law are also easily shown by comparison of second-order 

solutions in physical variables using a square-root viscosity law and 

solutions in transformed Levy-Lees variables using the Sutherland vis- 

cosity law.  Unless otherwise noted, all solutions used perfect gas 

(Y = 1.4), constant Prandtl number (Pr = 0.71), uniform wall tempera- 

ture (Tw/T0 = 0.2 at Mo, ■ S and 0.066 at M«, = 18), Sutherland viscosity 

law, and identical pressure distributions from an ideal-gas blunt body 

and characteristics solution at M,, » 9 or 18. 

For computation purposes, three sets of conditions or cases were 

defined at Mo, = 18 and five cases at M«, = 9. The free-stream and 

unpublished comparisons between solutions in physical and trans- 
formed variables have shown identical results for all second-order 
effects except displacement and vorticity. Therefore, unless otherwise 
noted, the differences shown between second-order solutions were due 
entirely to the choice of viscosity law. 
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stagnation conditions used in the first- and second-order boundary- 

layer calculations are given in Tables I and II. 

The second-order solutions for each vorticity and displacement 

based upon displacement pressure treatment were found to be numerically 

nonunique. The solutions were affected by both Ay or An step sizes and 

!!„ or its equivalent in physical variables.  It was found, however, that 

the sum of both displacement and vorticity effects was unique and was 

equal to the displacement speed treatment of the sum of both effects. 

However, since the displacement speed treatment greatly magnifies both 

displacement and vorticity effects and since the effects of An step size 

and n„ were certainly significant but not large, the second-order 

solutions shown were based upon the displacement pressure treatment. 

Moreover, since the sum of the two effects is unique, no loss in 

accuracy is involved when comparisons are made with their combined 

effects. 

I. TRANSVERSE CURVATURE EFFECTS 

A comparison of the results of the first- and second-order 

treatments of the transverse-curvature-induced friction drag at 

M^, ■ 9 and 18 is shown in Figures 11 and 12. At both Mach number con- 

ditions, the differences are small between second-order solutions with 

different viscosity laws; however, the approximate treatment of Clutter 

and Smith predicts an increment about 30 per cent less. This is a 

significant error, and the Clutter and Smith treatment cannot be 
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TABLE I 
EXPANSION PARAMETER AND REYNOLDS NUMBER 

Case M 
CO e Re» Re* 

187 18.0 0.0776 4844.9 429.1 

185 18.0 0.2330 538.3 47.7 

182 18.0 0.3516 236.2 20.9 

95 9.0 0.1000 925.49 250.35 

93 9.0 0.2401 160.26 43.35 

90 9.0 0.3336 83.18 22.5 

91 9.0 0.4398 47.87 12.95 

92 9.0 0.5337 32.50 8.79 
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TABLEJI 
CONDITIONS USED IN THE BOUNDARY-LAYER CALCULATIONS 

H» 18.0 9.0 

He,  ft
2/sec2 4.988X107 3.261X107 

P;, ibf/ft2 146.88 13.036 

T«,   *R 8289. 5263. 

u*2/2href 0.03923 0.02565 

u«,,  £t/sec 10074.8 7840. 

p.,  lbf/ft2 0.35172 0.01244 

p  ,  lbf-sec2/ft4 1.624xl0"6 2.367X10-7 

T„, °R 126.0 306.0 

Tw»    R 547.0 1053. 

gW 
0.066 0.20 

Bsh 0.770                                      0.769 
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recommended for calculations involving transverse curvature.2 

II.   VORTICITY INTERACTION EFFECTS 

Figure 13 shows the local skin-friction coefficient predicted 

by first- and second-order methods.    Good agreement exists for about 

8.5 nose radii from the stagnation point.    Beyond that point the 

first-order prediction increases whereas the second-order result 

remains approximately constant to the base of the cone  (x = 16.4). 

The effects of both Ax and An step sizes were investigated for 

the first-order solutions.     It was found that the solution was 

sensitive to An but insensitive to Ax step sizes.    This is explained 

as  follows:     First,  the transformations used by Clutter and Smith are 

such that without vorticity effects the classical boundary layer was 

substantially reduced from n„ = 6 at x » 0 to riB = 2 over much of the 

conical afterbody  (f°r longer bodies or bodies with more favorable 

pressure gradient, values of n«, =  1 were not uncommon).    The variation 

in boundary-layer thickness was less in the Levy-Lees transformed 

plane than in either the physical or Clutter and Smith transformed 

plane.    Therefore,  for classical boundary-layer solutions, the Clutter 

and Smith transformation is not optimum for bodies with strong favor- 

able pressure gradients.    Secondly, and more importantly, the extent 

unpublished comparisons among numerical calculations of trans- 
verse curvature effects using a finite difference solution in Levy-Lees 
variables, the second-order results using the Davis and Flügge-Lotz 
method,  and the first-order treatment of Jaffe, Lind,  and Smith  [22] 
showed that all three methods gave essentially the same results when 
identical conditions were used. 
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of the boundary layer with external vorticity is limited by a line of 

maximum velocity V      = l/fl-hg/l^)1'^ (see Appendix A). Along this 

line L »0 and p4 ■* «. This substantially reduces n below the allowed 

classical solution value. It was therefore necessary occasionally to 

reduce the An step size as the solution proceeded along the body. The 

data normal to the surface were interpolated so that a minimum of 200 n 

points were used to integrate the momentum and energy equations. The 

solutions were accepted when similar calculations were made with reduced 

step sizes and no significant changes were observed in f" and g'. 

Similar reduction of Ax-step size significantly increased machine time 

without affecting the solution. Examination of the f'(n) profiles 

showed they asymptotically approached a linear variation as n ■+ nw. 

The first-order solutions shown with vorticity were examined 

for step size effects and are believed to be unaffected of both Ax and 

An step sizes. The divergence of solutions for x > 8.5 is believed to 

be a result of the first- and second-order boundary-layer treatments 

and not an accuracy or step size effect. This effect was observed for 

all solutions, but the divergence in solutions increased as the Reynolds 

number decreased or e increased. 

The good agreement between the values of Cf from the first- and 

second-order treatments of the effects of vorticity for x < 8.5 is 

gratifying and might have been expected; however, to the author's 

knowledge, this is the first time the essential agreement between 

first- and second-order solutions has been demonstrated for conditions 

far from the stagnation region. 
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The importance of the difference in first- and second-order 

shear stress is shown in Figures 14 and 15r At M «9 the first- and 
OB 

second-order solutions were in excellent agreement for e < 0.2 and 

departed rapidly as e increased. For c ■ 0.4 the first-order predic- 

tion was approximately twice the second-order increment.  The large 

difference in this the largest higher-order drag component is dis- 

appointing, and moreover, it will be shown by comparison with experi- 

mental data that both methods overpredict the total zero-lift drag for 

e > 0.2. The trends of the results at Mn = 18 were similar to those 

at MB = 9, but the solutions tended to separate earlier and one of the 

first-order solutions fell below the second-order solution curve. The 

range of e was chosen for numerical solution to cover generally the 

range of available experimental data, and thus the ranges differed for 

the two Mach numbers. 

Figure 16 shows a convenient quantity introduced by Davis and 

Flugge-Lotz for a stretched nondimensionalized displacement thickness. 

The quantity (which they denoted as DISP) is defined here as 5£ = 6*/e 

and thus is independent of the expansion parameter. Comparisons of the 

results shown on Figure 16 indicate the effects of viscosity law on 

the two-dimensional displacement thickness, the effects of transverse 

curvature, and the effects of first-order vorticity interaction on the 

displacement thickness. Using a square-root viscosity law gave a 

slightly larger 6* than the use of Sutherland's law predicted. The 

axisymmetric 5* including TVC was slightly below the two-dimensional 

result. A dramatic effect occurred when the expression for the 
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Fig. 14   First- and Second-Order Vorticity-lnduced Friction Drag Predictions at 
M«,  =  9, Tw/T0  =  0.2, and rn/rb =  0.3 
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displacement thickness 6*,  which is derived in Appendix C and includes 

vorticity interaction, was compared with the classical forms.  Includ- 

ing vorticity produced a negative displacement thickness over the nose 

(whereas the values calculated using classical theory were slightly 

positive), substantially increased the rate of growth in the region of 

strong favorable pressure gradient, and caused a rapid decline in dis- 

placement thickness over much of the conical afterbody where the 

effects of vorticity on the velocity profile and wall shear were most 

important. The behavior of 6* indicates the difficulty of realistically 

and consistently treating the combined effects of displacement and 

vorticity interactions by a first-order method without simultaneously 

treating the interaction of the entropy and boundary layers. Of course, 

in the second-order theory this interaction was not considered and its 

region of applicability was also limited. These limitations can also 

be seen in the next chapter from comparisons of the numerical results 

with some experimental data* 

III. DISPLACEMENT EFFECTS 

The first-order displacement-induced pressure distributions over 

the spherically blunted cone are shown in Figures 17 and 18. The large 

effect of displacement on the pressure distributions for the ranges in 

Reynolds number considered is evident from the figures. The bump in 

the pressure distribution for the lowest Reynolds number or largest c 

considered at M«, * 9 can be seen in Figure 18. The bump is caused by 

the rapid increase in displacement thickness in the region x ■ 1.0 to 
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2.0. As described in Appendix B, the curve fit of the effective body 

in the region of rapid increase in displacement thickness was poorer 

since inflection points were not allowed in the effective body curve 

fits over this region. However, allowing inflection points in the 

curve fits would only have caused larger bumps and induced secondary 

shocks which would have further altered the pressure distributions 

over the conical afterbody. 

First» and second-order displacement-induced pressure and 

friction-drag increments are shown in Figures 19 and 20. Perturbed 

inviscid outer flow solutions were obtained for four values of e 

at M«, ■ 9 and three values at M,,, » 18. The two predictions for the 

displacement-induced pressure drag differed only by the effect of the 

pressure gradient over the nose, where the effect was included in the 

second-order but not in the first-order treatment. 

The differences between the two treatments of displacement- 

induced friction drag were larger, and the results are more interest- 

ing.  In the first-order treatment, only the effect of displacement 

of the inviscid outer flow-field pressure was included.  In the second- 

order solutions, however, the effects of inviscid vorticity on the 

outer edge velocity and temperature were also present. 

Caution must be used when trying to generalize the results 

shown in Figures 19 and 20. First, the second-order results for 

displacement-induced pressure and friction-drag increments were not 

simply linearly and quadratically dependent, respectively, on e. 

(It is interesting to note, however, that the first-order friction-drag 
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results were quadratically dependent on E.) Secondly, for other bodies 

under different conditions, negative second-order displacement-induced 

friction drag has been found. The effects of geometry (both surface 

slope and length), wall-to-stagnation temperature ratio, and viscosity 

law used have the strongest influence on second-order wall shear stress 

distribution. For the conditions treated here, the effects of wall-to- 

stagnation temperature ratio caused small differences in the induced- 

drag increments for both first- and second-order treatments. 

It is emphasized again that the second-order displacement-induced  "" 

friction-drag results shown in Figures 19 and 20 were not unique. The 

results shown in Levy-Lees variables were obtained with an edge n - 6. 

Two conditions were recalculated using n„ = 9, and the displacement- 

induced friction drag was increased about 7 per cent without affecting 

the displacement-induced pressure drag. Therefore, the excellent agree- 

ment between the second-order solutions in physical and Levy-Lees 

variables was to some extent fortuitous .since neither solution was 

independent of the outer matching point location. 

IV. SLIP AND TEMPERATURE JUMP EFFECTS 

Comparisons of first- and second-order wall slip velocity and 

temperature jump for one of the conditions at Ma = 9 are shown in 

Figures 21 and 22. The first-order slip velocity and temperature was 

lower than the second-order results by about 15 to 20 per cent. Figure 

23 shows a comparison of the first- and second-order local (total) 

skin-friction coefficient. The differences in slip velocity and 
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temperature caused a negligible effect on the wall shear stress dis- 

tribution. Moreover, for the lowest Reynolds number condition con- 

sidered (Re^/in. < 400), the separate effects of slip and temperature 

jump were indeed small in comparison with other effects. 

The slip-and-temperature-jump-induced friction-drag results 

are shown in Figures 24 and 25. At the highly cooled wall conditions 

at M = 18, the second-order solution in physical variables was step 

size dependent, and an acceptable solution was not obtained for this 

effect at these conditions using physical variables.  In either the 

Clutter and Smith or Levy-Lees transformed planes, the highly cooled 

wall presented no difficulty, and stable solutions were obtained with 

■reasonable (An a 0.025 or 0.05) step sizes.  Both first- and second- 

order treatments evaluated the properties in the slip velocity and 

temperature at the no-slip wall conditions. The differences between 

first- and second-order treatments were larger for this separate effect. 

However, since this drag component was small compared with other second- 

order effects, the difference between the two treatments was not an 

important influence on the total drag prediction for e < 0.2. 

A comparison of the first- and second-order incremental friction- 

drag components at H,,, = 18 is shown in Figure 26. The nonlinearities 

of the first-order vorticity-induced friction drag and the second- 

order displacement-induced friction-drag components arc clearly visible 

as well as the empirically linear variation of the first-order dis- 

placement and TVC effects. The second-order results in physical vari- 

ables using a square-root viscosity law are not shown since they were 
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in good agreement with the second-order results presented. Displayed 

in this way, it is obvious that for the conditions considered all of 

the separate higher-order drag components can be classified as either 

major (TVC, displacement and vorticity) or minor (STJ and LC) effects. 

However, when the effects are coupled in the first-order treatment, no 

simple classification exists. The results of such a comparison at 

Hw *  9 showed qualitative agreement with the results at Mn = 18; there- 

fore, the M^ ■ 9 data are not presented. 

V. COUPLED EFFECTS 

The first-order treatment of higher-order effects on the skin- 

friction coefficient at H« ■ 9 is shown in Figure 27. The results are 

shown for a large value of the expansion parameter e « 0C533 in order 

to magnify some of the effects and clearly establish the strong coupling 

influence of small individual effects. 

The individual effects of transverse curvature (TVC), vorticity 

(vort), displacement (disp), and slip and temperature jump (STJ) on the 

skin-friction coefficient are seen by comparison with the classical 

first-order axisymmetric result. The bumps in the curves including 

displacement were caused by a displacement-induced compression region 

over the effective body and the resulting displacement of the inviscid 

outer flow. Although at the conditions considered in Figure 27, each 

separate higher-order effect had a significant influence on the skin- 

friction distribution, the separate effect of vorticity was clearly 

dominant. The strong effect of coupling displacement and vorticity can 
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be seen by comparison of the results of these combined effects with the 

sum of the independent effects. Coupling displacement with vorticity 

approximately doubled the vorticity-induced skin-friction coefficient. 

The displacement-induced pressure strongly affected the vorticity index 

ft which in turn controlled the vorticity effect. Coupling TVC with 

displacement and vorticity increased the coupled effects of the latter 

two by about the increment due to transverse-curvature-induced skin 

friction only. The most surprising result was found when slip and 

temperature jump effects were coupled with displacement, vorticity, and 

transverse curvature. Near the end of the body, the effects of STJ 

were larger than the combined effects of displacement and transverse 

curvature! The trends clearly indicate that if the body were longer 

the effects of slip and temperature jump would offset not only the 

effects of displacement and transverse curvature but vorticity as well. 

In Chapter III it was shown that f'(n*0) « f"(n=0). Vorticity increased 

f" which in turn increased the slip velocity f'(n-0) which reduced the 

velocity gradient f"(n=0). This coupling between vorticity and STJ can 

be seen by comparison of the almost linear increase in the vorticity- 

induced skin-friction coefficient with the almost linear decrease in 

the combined total effects including slip. 

The effects of coupling first-order displacement and vorticity 

effects can be seen in Figures 28 and 29. The vorticity index ft(x) 

is shown for the conditions at M„ » 9 and 18 both with and without the 

displacement effect. As the Reynolds number decreases, c increases for 

both Mach numbers. The dependence of ft(x) on the pressure can be seen 
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as follows:     In Chapter III it was shown that 

flCx) * [(He/u*2)  - I    (ue/uj2]   K/ue)
3/2 

when    x    is held fixed and the pressure allowed to vary.     From the 

perfect gas law and energy equation 

p = pRT»Iliph = Ilio(He - ue
2/2) 

Along a streamline    p * pY  , and also 

[u. Y       "e - h» 1/6 1/6 

Y 

ft 
Therefore, one finds that 

Y-l    r Y-l 1 -3/4 

P :*rw*['-M*] 
i       .III    r III 2(y-ll -, 

where the remaining terms are all positive and can be neglected in 

comparison with the three leading terms for p/p' < 0.1. 

As the Reynolds number is reduced or e increases, the displace- 

ment thickness increases which produces a larger displacement- 

induced pressure (see Figures 17 and 18, pages 67 and 68). Thus, when 

the displacement and vorticity effects are coupled, the displacement- 
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induced pressure increases the vorticity effect by increasing fi(x). 

Because of the hotter wall at H„ = 9 (TW/TQ ■ 0.2 at M. « 9, 

whereas Tw/T0 = 0.Ü66 at ^ = 18), the displacement thickness was 

positive over the spherical nose rather than negative as in the M = 

18 cases. The rapid increase in displacement thickness at Ma = 9 for 

0.8 < x < 2.5 caused bumps in the iJ(x) curves which were not observed 

at the M,,, = 18 highly cooled wall condition.  It should be noted that 

e = 0.33 for Case 90 with a bump and E = 0.35 for Case 182 without a 

bump, and thus there was a region of overlap for comparison, 

Although the coupling between displacement and vorticity was not 

as dramatic as the coupling between vorticity and STJ, the effect was 

important. Since the first-order treatment always produces an increase 

in displacement'induced pressure, the effects of displacement and 

vorticity coupling would be expected to increase with increasing wall- 

to-stagnation temperature ratio and increasing body length. 

The results for the coupled higher-order effects were clearly 

not linearly independent as were the second-order effects of TVC, 

longitudinal curvature, vorticity, and slip and temperature jump 

according to Van Dyke's theory. The obvious result here was that small 

separate higher-order effects had a strong influence when coupled with 

other higher-order effects, and a simple linear combination of each 

first-order effect was not justified and could lead to erroneous results, 

VI. RANGE OF APPLICABILITY 

The range of applicability of the first- and second-order 
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theories must finally be determined by comparison with experimental 

data; however, it is instructive to consider the range of applicability 

predicted from the numerical results. 

The first-order boundary layer-to-shock layer thickness ratio 

over the cone at Ma = 18 is shown in Figure 30. The boundary-layer 

thickness was defined to be the distance normal to the wall where f = 

u/ue = 0.U95 and y^ is the first-order (nonperturbed) inviscid shock- 

layer thickness from the blunt body and characteristics solutions.  The 

variation of Ö/ysh 
was small over the entire body, as shown in Figure 

30, and a region is indicated between e = 0.11 and 0.16 where <5/ysn = 

1.  Beyond this region the shock layer is fully viscous and boundary- 

layer theory is not applicable. 

The values of x shown in Figure 30 correspond to some of the 

stations along the body used in the first-order boundary-layer cal- 

culations in Clutter and Smith variables. The boundary layer-to-shock 

layer thickness ratio is minimum at the stagnation point (x = 0), a 

maximum at the sphere-cone tangent point (x = 1.409), and the variation 

over the entire body is rather small (about 30 per cent).. 

Since the boundary-layer thickness was arbitrarily defined, the 

effect of the definition of the boundary-layer thickness on 5/ys^ is 

shown in Figure 31. The results of the variation f' = 0.90 to 0.999 are 

shown at the location x = 3.54. The results for f' = 0*90 and 0.95 are 

shown only for interest since these values are too low for serious con- 

sideration. The range in c is not significantly affected by the 

variation f£ = 0.990 to 0.999, and thus the value of 0,995 appears to be 
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Fig. 30   Boundary Layer-to-Shock Layer Thickness Ratio Over the Cone at MM = 18 
and Tw/T0  = 0.66 
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a reasonable choice for the definition of boundary-layer thickness. 

VII. COMPUTING TIME REQUIREMENTS 

In concluding this chapter on the discussion of numerical results, 

a comparison is given of computing time required for the first- and 

second-order boundary-layer calculations. The times required for the 

calculations on a Control Data Corporation 1604-B digital computer are 

shown in Table III. The time required for the first-order treatment 

including the vorticity effect increased as the Reynolds number de- 

creased (or as c increased) for each of the free-stream Mach numbers 

considered. Therefore, the times shown in Table III are valid only for 

one set of conditions (Case 185), and the data are shown primarily for 

comparison of the machine time required for the first- and second-order 

boundary-layer calculations. 

From the results shown in Table III, the implicit finite- 

difference method in physical variables or Levy-Lees variables was 

approximately three times faster than the first-order solution in Clutter 

and Smith' variables for treating the classical boundary-layer problem. 

It should be noted also that the number of stations used in the finite- 

difference solutions was approximately ten times the number used in the 

first-order treatment. Including the second-order effects in the finite- 

difference solutions approximately doubled the computing time required 

^The computing time required for the blunt body and characteris- 
tics solutions (approximately 20 minutes for each case considered) was 
in addition to the time shown in Table III for the boundary-layer 
calculations. 
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TABLE III 
COMPUTING TIMES FOR FIRST- AND SECOND-ORDER 

TREATMENTS OF HIGHER-ORDER BOUNDARY-LAYER EFFECTS0 

First-Order Second-Order Second-Order 
Effect Clutter-Smith Physical Levy-Lees 

Variables Variables Variables 

Computing time, minutes** 

Classicalc 75 25 26 
TVC 75 50 55 
STJ 75 50 55 
ilisp 75 50 55 
vort 100 50 55 
disp + vort 120 ... -- 
disp ♦ vort + TVC 165 .. -- 
disp+vort+TVC+STJ 180 

Supp: 

50 

lementary Data 

55 

Stations along the 
body 34 336 390 

n,,, (maximum) 3 ... 6 
An 0.025 ... 0.05 
AN ■h — 0.02 - — 

aCase 185, M = 18, e = 0. 233 

bTimc required on a Control  Data Corporation  1604-B digital 
computer  (computing speed approximately 60 per cent of IBM 7094)  with 
an on-line printer. 

effects. 

cCalculations for axisymmetric body without any higher-order 
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for the classical boundary-layer problem. 

For engineering purposes, one would usually be interested in 

calculations which include all of the significant effects.  In both 

first- and second-order treatments, at least two complete boundary- 

layer calculations were required since, using the methods described 

herein, the effects of displacement could not be obtained with a single 

calculation. Therefore, for the conditions shown in Table III, a 

minimum of 225 minutes was required for the first-order treatment 

including all effects and 75 or 81 minutes was required for the second- 

order treatment in physical or Levy-Lees variables, respectively. 

The substantial savings in computing time using the implicit finite- 

difference method makes this scheme attractive for other applications 

[for example, the chemically reacting boundary-layer problem). 
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CHAPTER V 

COMPARISON OF NUMERICAL RESULTS AND EXPERIMENTAL DATA 

Results of the first- and second-order treatments will be com- 

pared with some available experimental data on pressure and heat- 

transfer distributions and zero-lift drag of a spherically blunted cone 

at Mm  » 9 and 18. The experimental data were obtained from Whitfield 

and Griffith [1] and [28], Lewis [29], and Griffith and Lewis [30]. 

Some previous numerical results of Lewis and Whitfield [7] will also be 

compared with the numerical results from the first- and second-order 

treatments and the experimental data. 

I. PRESSURE DISTRIBUTIONS 

The displacement-induced pressure over a spherically blunted cone 

at M„ - 20 is shown in Figure 32. The first-order iterated results of 

Lewis and Whitfield [7] and the second-order results of Marchand, 

Lewis, and Davis [18] at Mw = 18 are compared with the experimental data 

of Lewis [29] and Griffith and Lewis [30]. It is obvious that the 

trends of the experimental results were not predicted by either first» 

or second-order treatments. The nonlinear character of the first- 

order results of Lewis and Whitfield was due to the effects of iterating 

the inviscid outer flow and the viscous boundary-layer flow fields. The 

effect of this iteration was always to reduce the displacement-induced 

pressure. 
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The poor agreement between numerical results and experimental 

pressure data is not understood. The experimental data lay in a range 

where the second-order theory should have been applicable. Moreover, 

the experimental data and numerical results have been checked extensively, 

and the errors due to approximations in the numerical treatments and 

experimental scatter are believed to be small deviations. 

II. HEAT-TRANSFER DISTRIBUTIONS 

Figure 33 shows a comparison of first- and second-order heat 

transfer to a sphere-cone at Mn * 18. In contrast with the pressure 

data discussed above, the first- and second-order results were in 

excellent agreement with the experimental data of Griffith and Lewis [30]. 

Because of the limited experimental data available, caution must be used 

in interpreting the comparison with the numerical results. 

III. ZERO-LIFT DRAG 

The final and most instructive comparisons between first- and 

second-order numerical results and experimental data are given in Figures 

34 through 41. The total drag predicted by the two treatments is com- 

pared with the experimental data of Whitfield and Griffith [1] and [28], 

The results from the first-order treatment of the higher-order 

effects on zero-lift drag are given in Table IV. Comparison of the sum 

of separate effects with the results including the coupled effects shows 

that the results were not lincaraly independent, but strong coupling was 

involved especially at the highest e. The relatively good agreement 
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Experimental Data 

Sym    N\m     T^ °K    Re^ 
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Fig. 33   Heat Transfer too Spherically Blunted Cone at M«,  =   18, Tw/T0  =  0.066, 
0C = 9 degrees, and r„/rj,  = 0.3 
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Fig. 34   Predictions of the Drag of a Spherically Blunted Cone at M^   =   18, 

Tw/T0 = 0.066, and tn/t^ =  0.3 Using Second-Order Boundary-Layer 
Theory in Physical Variables 
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Fig. 35 Predictions of the Drag of a Spherically Blunted Cone at Mas  =  18, 

Tw/T0  = 0.066, and rn/r[, =  0.3 Using Second-Order Boundary- 

Layer Theory in Levy-Lees Variables 
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Fig. 36   Predictions of the Drag of a Spherically Blunted Cone at MM   =   18, 

TW/TD   =  0.066, and rnA|,  =   0.3 Using First-Order Boundary-Layer 

Theory in Clutter and Smith Variables 
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Fig. 37   Comparison of First-and Second-Order Predictions of the Drag of a 

Spherically Blunted Cone at MK  =   18, Tw/T0  = 0.066, and 

rn/rb =  0.3 
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Fig. 38 Predictions of the Drag of a Spherically Blunted Cone at MM = 9, 

Tw/T0 = 0.2, and rn/rj, = 0.3 Based on Second-Order Boundary- 
Layer Theory in Physical Variables 
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Tw/T0  -=  0.2, and rnAb  =   0.3 Based on Second-Order Boundary- 
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Fig. 40   Prediction of the Drag of a Spherically Blunted Cone at M«, =  9, 

Tw/T0 =  0.2, and rn/f|,  =  0.3 Using a First-Order Boundary- 

Layer Treatment in Clutter and Smith Variables 
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Fig. 41   Comparison of First- and Second-Order Boundary-Layer Theory 

Predictions of the Drag of a Spherically Blunted Cone at M«,  =  9, 

Tw/T0  = 0.2,andrn/rb =  0.3 
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TABLE IV 
FIRST-ORDER RESULTS OF HIGHER-ORDER EFFECTS ON ZERO-LIFTDRAG 

Case e Effects* cDf s DTotal 

187 0.0776 TVC 0.05S0 0.0550 0.1692 
187 0.0776 STJ 0.0514 0.1142 0.1656 
187 0.0776 vort 0.0555 0.1142 0.1697 
187 0.0776 vort+TVC 0.0584 0.1142 0.1726 
187 0.0776 disp 0.0552 0.1223 0.1775 
187 0.0776 disp+vort 0.0600 0.1223 0.1823 
187 0.0776 disp+vort+TVC 0.0633 0.1223 0.1856 
187 0.0776 disp+vort+TVC+STJ 0.0630 0.1223 0.1853 
185 0.2530 TVC 0.1851 0.1142 0.2993 
185 0.2530 STJ 0.1529 0.1142 0.2672 
185 0.2530 vort . 0.1915 0.1142 0.3057 
185 0.2530 vort+TVC 0.2206 0.1142 0.3348 
185 0.2530 vort+TVC+STJ 0.2106 0.1142 0.3248 
185 0.2530 disp 0.1878 0.1437 0.3315 
185 0.2530 disp+vort 0.2558 0.1437 0.3995 
185 0.2530 disp+vort+TVC 0.2873 0.1437 0.4310 
185 0.2530 disp+vort+TVC+STJ 0.2856 0.1437 0.4293 
182 0.3516 Classical0 0.2335 0.1142 0.3477 
182 0.3516 TVC 0.3018 0.1142 0.4160 
182 0.3516 STJ 0.2295 0.1142 0.3437 
182 0.3516 vort 0.3497 0.1142 0.4639 
182 0.3516 vort+TVC 0.4268 0.1142 0.5410 
182 0.3516 disp 0.3118 0.1667 0.4785 
182 0.3516 disp+vort 0.5628 0.1667 0.7295 
182 0.3516 disp+vort+TVC 0.6304 0.1667 0.7971 
182 0.3516 disp+vort+TVC+STJ 0.6229 0.1667 0.7896 

95 0.1000 TVC 0.0811 0.1667 0,1977 
95 0.1000 vort 0.0819 0.1667 0.1985 
95 0.1000 disp 0.0798 0.1320 0.2118 
95 0.1000 disp+vort 0.0905 0.1320 0.2225 
95 0.1000 disp+vort+TVC 0.0973 0.1320 0.2293 
95 0.1000 disp+vort+TVC+STJ 0.0961 0,1320 0.2281 
93 0.2401 TVC 0.2185 0,1166 0.3351 
93 0.2401 STJ 0,1724 0.116G 0.2890 
93 0.2401 vort 0.2464 0.1166 0.3630 
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between the first* and second-order results of the total drag predictions 

shown in Figures 37, page 100, and 41, page 104, should be considered 

fortuitous in view of the strong effects of first-order coupling. 

On Figures 36, page 99, and 40, page 103, the curves labeled 

QUotal were obtained by summation of the separate effects treated 

independently (that is, no coupling of effects was considered). Separate 

curves labeled Cpvort+ji«TJ+TVC+STJ 
are snown which included all effects 

coupled simultaneously. For both Mach number conditions, the results 

show excellent agreement between the uncoupled and coupled drag pre- 

dictions for e - 0.1 and somewhat surprisingly good agreement for e > 0.1 

considering the strong coupling effpets on the skin-friction coefficient 

shown in Figure 27, page 81. 

For M„ a 18 and e < 0.15, good agreement was found between 
i 

numerical results and the available experimental data, but for e > 0.2 the 

agreement was poor. Recalling that in the second-order theory it was 

assumed that e << 1, one should expect that as c increases at some 

value the theory will no longer be applicable. For conditions considered 

here, this point appears to be near E « 0.15. From this comparison the 

range of applicability of the theory is consistent with the range pre- 

dicted from consideration of boundary layer-to-shock layer thickness 

ratio, 6/ysh. 

The previous first-order results of Lewis and Whitfield [7] are 

also shown for comparison in Figures 37 and 41. The apparently good 

agreement between their prediction and experimental data was simply 

fortuitous since only approximate transverse curvature (Clutter and Smith) 
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and displacement (iterated inviscid-viscous flow fields) were included. 

The comparisons of transverse-curvature-induced friction drag showed that 

the approximate Clutter and Smith treatment led to an error of about 30 

per cent in that component. Also, iteration of the inviscid-viscous flow 

fields reduced the displacement-induced pressure and friction drag.  In a 

first-order sense, it can be argued that iteration was allowable until 

there was negligible change in p(x). The fact remains, however, that in 

the earlier work a sizable error existed in the transverse curvature term 

and the important contribution of external vorticity was not considered. 

It is interesting to note that the improved theoretical model and numerical 

technique gave results in poorer agreement upon comparison of "theoreti- 

cal" results and experimental data.  However, the application of highly 

approximate schemes outside the range where they have been extensively 

compared with experimental data can lead to erroneous results, 
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CHAPTER VI 
CONCLUSIONS AND SUMMARY 

Based upon comparison of first- and second-order treatments of 

transverse curvature, vorticity, displacement, and slip and temperature 

jump, and comparisons of numerical results with experimental data, the 

following conclusions are drawn: 

1. The approximate treatment of transverse curvature by Clutter 

and Smith led to errors in wall shear stress which in turn led to errors 

in transverse-curvature-induced friction drag of about 30 per cent. 

2. The first- and second-order treatments of vorticity interaction 

were in substantial agreement over the forward half of the body, and the 

first-order treatment predicted higher wall shear and thus higher total 

vorticity-induced friction drag than the second-order results gave. 

Including vorticity interaction in the evaluation of displacement lead 

to unrealistic displacement thickness distributions over the body. 

3. The first- and second-order treatments of slip and temperature 

jump led to significant differences in slip velocity and temperature but 

small differences in skin-friction coefficient. The differences in the 

friction-drag predictions for the two treatments were significant for 

this separate effect, but the effect on the linear combination of effects 

was not large. A strong effect of first-order slip and temperature jump 

was observed when coupled with all other higher-order effects at very low 

Reynolds number. However, in the range of applicability of the theory, 
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the effects were small. 

4. The first- and second-order treatments predicted substantially 

the same displacement-induced pressure drag; however, the second-order 

treatment predicted substantially higher displacement-induced friction 

drag. The difference was attributed to the effects of normal pressure 

gradient and external vorticity on the second-order outer edge velocity 

and temperature since these effects were neglected in the first-order 

treatment. 

5. The second-order displacement-pressure treatment used was not 

unique numerically, but the error was small (about 5 per cent) and gave 

physically realistic results for comparison of this separate effect with 

the first-order results. Because of the nonuniqueness of the results, 
i   » 

only the sum of all second-order effects should be considered and the 

combined vorticity-displacement interaction based upon the displacement 

speed treatment should be used. 

6. Both first- and second-order treatments substantially over- 

predicted the experimentally measured pressure distribution for a sphere- 

cone at M,,, ■ 18. These differences are not understood since the compar- 

isons were made under conditions where the second-order theory should be 

applicable. More extensive experimental data are needed to clearly 

establish the differences, and further improvements in the theoretical 

model are needed to improve the agreement with experimental observations. 

7. The agreement between first- and second-order predictions of 

Stanton number and experimental data was excellent for Mm = 18. Caution 

must be used in interpreting these results since limited experimental data 
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were available for the conditions treated. 

8. For M^ = 18 and e < 0.15, good agreement was found between 

second-order predictions of zero-lift drag and experimental results.    For 

€ > 0.2 at both M«, a 9 and 18, the second-order treatment substantially 

overpredicted the total drag, and higher-order effects are needed to 

improve agreement between theory and experiment. 

9. For the conditions treated, the range of applicability of 

first- and second-ordeT boundary-layer theories is predicted theoret- 

ically by the    e    corresponding to 6/ysnock ^ * am* *Tom comParison with 

experimental zero-lift drag data was found to be e % 0.15. 

In summary, it has been shown that, except for the pressure data 

in the expected ränge of applicability of the second-order theory 

(e << 1), both first- and second-order treatments of higher-order boundary- 

layer effects were in substantial agreement with the experimental data. 

Beyond the expected ranges of applicability, the results from the 

numerical treatments substantially overpredicted the experimentally 

observed data.    Since boundary-layer treatments higher than second order 

would introduce viscosity into the outer flow field and thus substan- 

tially complicate the outer as well as the inner flow-field solutions, 

it is clear that boundary-layer treatments higher than second order are 

not the correct approach.    A theoretical model is needed which properly 

takes into account all higher-order effects such as a viscous "external" 

flow and the effects of transport properties on the shock wave.    The 

fully viscous shock-layer treatment described by Davis  [31]  should pro- 

vide a valuable tool for investigating this interesting and difficult 

problem. 
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APPENDIX A 
NUMERICAL METHODS FOR SOLVING RRST-ORDER 

BOUNDARY-LAYER EQUATIONS 

The treatment of the first-order boundary-layer effects was based 

on the method of clutter and Smith [8] since considerable work had pre- 

viously been done by Lewis and Whitfield [7] using the original method 

without vorticity interaction or slip and temperature jump. 

The essential features of the method will first be desribed, and 

then the modifications required to include STJ and vorticity will be 

discussed. 

The nonsimilar terms in the momentum and energy equation were 

replaced with two-point difference expressions, and the resulting equations 

were ordinary differential equations.    The split boundary-value problem 

was then reduced to an initial-value problem for numerical solution. 

'    The procedure used for solving the boundary-layer equations is 

shown in Figure 42.    The momentum equation is coupled to the energy 

equation through the fluid properties, and when the momentum equation 

solution is known, the energy equation is a linear differential equation 

in ifi ■ g - 1.    The method then was as follows:    First, fluid properties 

were assumed either crudely to initiate the solution or from the solution 

at the previous station or   x    location.    Then, the momentum equation was 

integrated from the wall    n ■ 0    to the outer edge of the boundary layer 

n * n^.     (The technique used for integrating the momentum equation is 
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Fig. 42  Clutter and Smith's Procedure tor Solving the Coupled Momentum 

and Energy Equations (from Clutter and Smith [8]) 
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described below.) Using the assumed fluid properties and the resulting 

trial solution of the momentum equation, two linearly independent solutions 

were obtained for the energy equation. Since the energy equation is 

linear, a linear combination of these two solutions was obtained satisfy- 

ing the wall and outer edge boundary conditions. New fluid properties 

were obtained, and a new solution was obtained for the energy equation 

using the same solution of the momentum equation. This process was 

repeated a prescribed number of times or until two successive solutions 

of the energy equation agreed within a prescribed test, that is, until 

I^U*1) . ^lUJj < ee where j is the iteration index. Then a new 

solution of the momentum equation was obtained based on the updated fluid 

properties. The procedure for solving the system was repeated a pre- 

scribed number of times or until U".    -♦"..*'I < e • Typical values ■  w        w  '   m    r 

used in the calculations without vorticity or STJ were as follows: 

Equation Iterations Convergence Test 

Momentum 5 0.001 

Energy 3 0.001 

The values listed above were input data and could be changed as 

required; however, the machine program is large and the machine time 

required was affected by the choice of data. Therefore, the tests were 

made as loose as consistent with the problems solved. 

The choice of method used to solve the momentum equation was 

important since the equation is nonlinear and under certain conditions 

the solutions were found not to converge.  Figure 43 shows typical trial 
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Fig. 43   Transformed Velocity Profiles Resulting from Trial Solutions of 

the First-Order Momentum Equation in Clutter and Smith Variables 

(from Clutter and Smith [8]) 
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solutions for the momentum equation. The technique used is called 

"shooting" or "hunting" since solutions are sought which satisfy the wall 

and outer boundary conditions» namely $'(0) - -1 and $'(0,») = 0 neglect« 

ing vorticity and STJ. 

Briefly the method used was as follows: A trial guess of the 

solution 4"w was made (either input or from a previously converged 

solution). The momentum equation was integrated from the wall n ■ 0 to 

n a nM or until |t'| > K where K was an input constant which was 

typically K ■ 0.5 (in Figure 43, K = 1.0). The value of $"w was increased 

or decreased if iJi'Cnmax) < K or 4|,(nmax) > K, respectively, until nmax » 

nn. The procedure was continued until three solutions were found, one of 

which was a high solution with K > <ji'a > 0, and one a low solution 

-K <  4'^ < 0, and the third solution was either high or low. The three 

solutions were then interpolated for a solution which satisfied the outer 

boundary condition at n . 
OB 

The method used to integrate both the momentum and energy equations 

was described by Clutter and Smith as a four-point extrapolation and 

interpolation formula, and they gave the details of the methods used. 

Because of the iterative technique used by Clutter and Smith for 

solving the momentum and energy equation, it was easy to modify the 

boundary conditions to include vorticity and/or STJ. With vorticity 

the outer boundary condition becomes 
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and with 5TJ the wall boundary condition becomes 

♦'„ ♦ 1 » £'w - [PV/(P*M*)](P*/P)FS f'Cn-0) 

and 

i , 

*w + 1 " gw 
B TT 

.   15 p»  p*    3h  ue  ft2l hw + rpTu7 p" F*?n + T- £w J 

where Fs is defined in Equation 86c. 

The remaining significant change occurred in the density profile 

when vorticity was included. Since the pressure is constant across the 

boundary layer, the density profile becomes (for a perfect gas) 

Pe §h  a 2(H/ue
2) - f'2 

p " K   "    2(He/ue
2) - 1 

Since with vorticity f'(«) > 1, the boundary layer cannot extend to 

infinity because at some distance h ■> 0 or T -* 0 and p -► «. Setting the 

static enthalpy h to zero in the above equation and solving for f• 

gives the maximum or limiting edge velocity possible 

f'max ■ 1/(1 • V»e)1/2 

The edge of the boundary layer (nw) must lie below this line of infinite 

density. Thus for large vorticity effects (large ft), the value of n«. 

was reduced as the solution progressed along the body. It was often 

necessary to reduce the An step size in the integration of the 

momentum and energy equations since values of n < 1 were not uncommon. 
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In order to reduce the step site An, it was necessary to stop the cal- 

culation, interpolate all quantities which were functions of n, and 

continue the calculation with the new step size, the procedure was 

straightforward but time consuming, especially when it was necessary to 

interpolate the results several times for ä given set of conditions. 
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APPENDIX B 
FIRST- AND SECOND-ORDER BOUNDARY-LAYER DISPLACEMENT EFFECTS 

In both first- and second-order treatments it was necessary to 

obtain a solution for'the perturbed inviscid outer flow.    The outer flow 

solution was obtained over the geometric body perturbed by the first- 

order displacement thickness defined as follows: 

CO 

6* - / [1 - pu/(peue)]dy 
o 

Inverse blunt body and characteristics solutions were obtained over the 

effective body. The method used was a modification of one developed by 

Lomax and Inouye [32]. The modification was necessary to properly des- 

cribe the effective body since, in general, no simple means was 

available to describe the entire body. An accurate approximate scheme 

was developed which permitted fitting the body by three separate curve- 

fit procedures with proper matching conditions. 

Approximate treatments have been used in the past to perturb the 

outer flow field. Davis and Flügge-Lotz perturbed the first-order 

inviscid flow solutions by assuming the effective body to be a body 

approximated by shifting and expanding the original geometric body. 

This treatment had the desirable feature of being independent of the 

expansion parameter e, and thus the results were quite general. The 

disadvantage which ruled out this method was that the shifted and 

expanded body technique was limited to the nose region (see [13]). 

124 



AEDCTR.68-148 

Since inviscid solutions were required over the entire effective body and 

especially over the conical afterbody, a new and more general method of 

solution was developed. 

A crude attempt was previously developed by Lewis and Whitfield [7] 

to treat the displacement effect. In that treatment, the spherical nose 

was expanded or contracted by the displacement thickness at the initial 

data line just downstream of the sonic line, and an approximate curve was 

faired between the spherical nose and a curve fit of the downstream 

effective body data. That method worked reasonably well except at very 

low Reynolds numbers in which case the displacement thickness became large 

and the region covered by the approximate curve fit became large in extent. 

The method used herein was an improvement on the scheme of Lewis 

and Whitfield [7] in that the numerical accuracy was substantially 

improved. The perturbed spherical nose was approximated with small error 

by a conic where the bluntness ratio was computed by fitting the effec- 

tive body at the initial data surface. This surface was determined by a 

rotationally symmetric line normal to the body where M = 1.05 at the 

inviscid wall. A curve was then fitted to the effective body data such 

that r, dr/dz, and d2r/dz2 were continuous on the surface at the initial 

line (M = 1.05) and also at the point where the curve joined the curve 

which fitted the data over the conical afterbody. The intermediate 

curve fit was also required to have no inflection points, and the best 

fit of the data in the least-squares sense which satisfied the other 

criteria was chosen. 

The results of the curve-fit procedure are shown'in Figure 44. 
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The fit became poorer as values of e increased from 0.1 to 0.5 since an 

inflection in the effective body curve occurred at the higher values. 

However, in a least-squares sense the fit remained good even though the 

extent of region increased substantially. Allowing inflection points to 

occur in the region near z  » 0.8 would have induced a secondary shock and 

substantially altered the flow field over the conical afterbody. Experi- 

mental data did not indicate any such secondary shock, and such a shock 

was not allowed. 

The perturbed inviscid outer flow solution method (blunt body and 

characteristics solution) was identical for both first- and second-order 

boundary-layer treatments. The difference in application were: (1) the 

way in which the outer boundary conditions are obtained, (2) the effects 

of the normal pressure gradients, and (3) the effects of inviscid 

vorticity. 

I. FIRST-ORDER TREATMENT 

The perturbed inviscid outer flow pressure was imposed on the first- 

order boundary-layer equations, and consistent with the first-order theory, 

the normal pressure gradient was neglected. The edge velocity was obtained 

from Bernoulli's equation, and the derivative was obtained numerically. 

The effects of inviscid vorticity were only implicitly involved through 

the blunt body and characteristics solution. Through the positive viscous- 

induced pressure increment, the first-order displacement treatment always 

produced an increase in both pressure and friction drag. This result is 

to be contrasted with the second-order treatment described below. 
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II.  SECOND-ORDER DISPLACEMENT PRESSURE TREATMENT 

The skin-friction coefficient Cf    is defined as follows: 

Cf- *  [2/p*U*2]   (|1.  9uV3n*)nss0 

■ 2e  TjCs.O)  ♦ 2e2 T2(S,0) 

where 
Tl(«t0) - (pu1N)N-0 

T2(S,0) - Cuu2N ♦ ii« t2 u1N)Na0 

Therefore, if T2(S,0) is independent of E, then the friction-drag 

component will be independent of e, and the total second-order friction 

drag CD£2 = / Cf^ cos a 2TT rwds/Aj, will be quadratically dependent on 

E» The first-order friction drag is given by Cnf, « e. The dependence 

was easily seen by inspection of the second-order equations except in the 

case of the displacement effect* For all second-order effects except 

displacement, c did not appear in the calculation. However, the outer 

edge boundary conditions for the second-order displacement pressure 

effect depended on e through the extrapolation of the inviscid outer 

flow pressure and velocity from the effective body to the geometric 

wall. Therefore, a perturbed inviscid outer flow solution was obtained 

for different values of e over the range of interest, whereas the 

other effects were simply scaled by c2 from a single calculation for 

given geometry and free-stream conditions (sec also Marchand, Lewis, 

and Davis [18]). 

The discontinuity in surface curvature, K , caused difficulties 
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in numerically evaluating the x-derivative of the extrapolated inviscid 

outer flow pressure. The discontinuity was replaced by an exponential 

fairing between K «= 1 and 0. The constant in the exponential term was 

varied as the x-step size was changed until a smooth transition in shear 

stress was obtained in the region of the sphere-cone tangent point. This 

scheme reduced some large oscillations induced by the discontinuity 

without substantially affecting the total displacement-induced friction 

drag. 

III. COMPARISON OF FIRST- AND SECOND-ORDER TREATMENTS 

The significant difference between the first- and second-order 

treatments was in the normal pressure gradient. In the second-order 

theory, the second-order normal momentum equation was used to extrapolate 

the pressure along the effective wall to the geometric wall or body 

surface. Consistent with the original first-order boundary-layer 

equations, the normal component of momentum was not considered in the 

first-order treatment, and the pressure was assumed constant throughout 

the boundary layer normal to the surface. Therefore, in the first-order 

treatment the perturbed inviscid outer flow pressure was impressed upon 

the first-order boundary layer as the edge pressure. 

The comparative effects on the first- and second-order solutions 

were as follows: 

1. Over the nose where the longitudinal curvature K ■ 1, the 

pressure on the surface from the second-order theory was either 

increased or decreased from the effective wall value, depending on 
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whether the displacement thickness was negative (highly cooled wall) or 

positive. Over the conical afterbody, where <  = 0, the first- and 

second-order treatments yielded the same surface pressure, assuming 

equivalent displacement thicknesses. However, because of the effects of 

the inviscid vorticity along the wall, the velocity at the surface was 

always less over the conical afterbody based upon the second-order 

theory. This effect due to inviscid vorticity was independent of 

inclusion or exclusion of the vorticity effect in the second-order boundary- 

layer treatment. Again, the coupling between displacement and vorticity 

is seen, but this time through the inviscid flow fields, 

2. The first-order displacement treatment always induced an 

increase in friction and pressure drags. The second-order effects could 

be either positive or negative, depending on the sign and magnitude of 

displacement thickness, and the effects of longitudinal curvature and 

inviscid external vorticity. 

These two major factors can cause the first- and second-order 

displacement treatments to yield substantially different effects on such 

global quantities as drag and total heat transfer; however, for the 

length of the cone and other conditions treated here, the first- and 

second-order treatments predicted induced-drag effects in good agreement. 
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APPENDIX C 
EFFECTS OF VORTICITYON DISPLACEMENT THICKNESS 

Assuming the following form for the inviscid velocity profile, 

ui " u
e C1 * ui y) 

where U[ ■  (f' (•) - l)/y(«0; then the definition of displacement thick« 

ness 

6* . « » 
/ p^u^dy ■ /    p^u^dy - / purJdy 
ooo 

leads to the following integral equation: 

6v 
B   /  (Pi/PeKl + U! y)(rw ♦ y cos a)J dy . 

= B / (Pi/PeHl + U£ y)(rw + y cos a)J dy 
o 

00 

-    /    f• (rw + y cos a)J dn 

where B = [Re* (ue/uj/x]
1/2 Pe/P*- 

When the vorticity is neglected, U! » 0 and the integral equation for 

6* reduces to the classical axisymmetric form of the equation with TVC 

Results are shown in Chapter IV for the variation of 6* over the body. 
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